
A Java Fork/Join Framework
Doug Lea

State University of New York at
Oswego

Oswego NY 13126
315−341−2688

dl@cs.oswego.edu

ABSTRACT
This paper describes the design, implementation, and
performance of a Java framework for supporting a style of
parallel programming in which problems are solved by
(recursively) splitting them into subtasks that are solved in
parallel, waiting for them to complete, and then composing
results. The general design is a variant of the work−stealing
framework devised for Cilk. The main implementation
techniques surround efficient construction and management of
tasks queues and worker threads. The measured performance
shows good parallel speedups for most programs, but also
suggests possible improvements.

1. INTRODUCTION
Fork/Join parallelism is among the simplest and most effective
design techniques for obtaining good parallel performance.
Fork/join algorithms are parallel versions of familiar divide−
and−conquer algorithms, taking the typical form:

Result solve(Problem problem) {

 if (problem is small)

 directly solve problem

 else {

 split problem into independent parts

 fork new subtasks to solve each part

 join all subtasks

 compose result from subresults

 }

}

The fork operation starts a new parallel fork/join subtask. The
join operation causes the current task not to proceed until the
forked subtask has completed. Fork/join algorithms, like other
divide−and−conquer algorithms, are nearly always recursive,
repeatedly splitting subtasks until they are small enough to solve
using simple, short sequential methods.

Some associated programming techniques and examples are
discussed in section 4.4 ofConcurrent Programming in Java,
second edition[7]. This paper discusses the design (section 2),
implementation (section 3), and performance (section 4) of
FJTask , a JavaTM framework that supports this programming
style.FJTask is available as part of theutil.concurrent
package from http://gee.cs.oswego.edu .

2. DESIGN
Fork/join programs can be run using any framework that
supports construction of subtasks that are executed in parallel,
along with a mechanism for waiting out their completion.
However, thejava.lang.Thread class (as well as POSIX
pthreads, upon which Java threads are often based) are
suboptimal vehicles for supporting fork/join programs:

• Fork/join tasks have simple and regular synchronization and
management requirements. The computation graphs
produced by fork/join tasks admit much more efficient
scheduling tactics than needed for general−purpose threads.
For example, fork/join tasks never need to block except to
wait out subtasks. Thus, the overhead and bookkeeping
necessary for tracking blocked general−purpose threads are
wasted.

• Given reasonable base task granularities, the cost of
constructing and managing a thread can be greater than the
computation time of the task itself. While granularities can
and should be subject to tuning when running programs on
particular platforms, the extremely coarse granularities
necessary to outweigh thread overhead limitsopportunities
for exploiting parallelism.

In short, standard thread frameworks are just too heavy to
support most fork/join programs. But since threads form the
basis of many other styles of concurrent and parallel
programming as well, it is impossible (or at least impractical) to
remove overhead or tune scheduling of threads themselves just
for the sake of supporting this style.

While the ideas surely have a longer heritage, the first published
framework to offer systematic solutions to these problems was
Cilk[5]. Cilk and other lightweight executable frameworks layer
special−purpose fork/join support on top of an operating
system’s basic thread or process mechanisms. This tactic applies
equally well to Java, even though Java threads are in turn
layered onto lower−level OS capabilities. The main advantage
of creating such a Java lightweight execution framework is to
enable fork/join programs to be written in a more portable
fashion and to run on the wide range of systems supporting
JVMs.

The FJTask framework is based on a variant of the design
used in Cilk. Other variants are seen in Hood[4], Filaments[8],
stackthreads[10], and related systems relying on lightweight

executable tasks. All of these frameworks map tasks to threads
in about the same way that operating systems map threads to
CPUs, but exploit the simplicity, regularity, and constraints of
fork/join programs in performing the mapping. While all of
these frameworks can accommodate (to varying extents) parallel
programs written in different styles, they optimize for fork/join
designs:

• A pool of worker threads is established. Each worker thread
is a standard ("heavy") thread (here, an instance ofThread
subclassFJTaskRunner) that processes tasks held in
queues. Normally, there are as many worker threads as there
are CPUs on a system. In native frameworks such as Cilk,
these are mapped to kernel threads or lightweight processes,
and in turn to CPUs. In Java, the JVM and OS must be
trusted to map these threads to CPUs. However, this is a
very simple task for the OS, since these threads are
computationally intensive. Any reasonable mapping strategy
will map these threads to different CPUs.

• All fork/join tasks are instances of a lightweight executable
class, not instances of threads. In Java, independently
executable tasks must implement interfaceRunnable and
define a run method. In theFJTask framework, these
tasks subclassFJTask rather than subclassingThread ,
both of which implementRunnable . (In both cases, a class
can alternatively implementRunnable and then supply
instances to be run within executing tasks or threads.
Because tasks operate under restricted rules supported by
FJTask methods, it is much more convenient to subclass
FJTask , so as to be able to directly invoke them.)

• A special purpose queuing and scheduling discipline is used
to manage tasks and execute them via the worker threads
(see section 2.1). These mechanics are triggered by those
few methods provided in the task class: principallyfork ,
join , isDone (a completion status indicator), and some
convenience methods such ascoInvoke that forks then
joins two or more tasks.

• A simple control and management facility (here,
FJTaskRunnerGroup) sets up worker pools and initiates
execution of a given fork/join task when invoked from a
normal thread (such as the one performingmain in a Java
program).

As the standard example of how this framework appears to the
programmer, here is a class computing the Fibonacci function:

class Fib extends FJTask {
 static final int threshold = 13;
 volatile int number; // arg/result

 Fib(int n) { number = n; }

 int getAnswer() {
 if (!isDone())
 throw new IllegalStateException();
 return number;
 }

 public void run() {
 int n = number;
 if (n <= threshold) // granularity ctl
 number = seqFib(n);
 else {
 Fib f1 = new Fib(n − 1);
 Fib f2 = new Fib(n − 2);
 coInvoke(f1, f2);
 number = f1.number + f2.number;
 }
 }

 public static void main(String[] args) {
 try {
 int groupSize = 2; // for example
 FJTaskRunnerGroup group =
 new FJTaskRunnerGroup(groupSize);
 Fib f = new Fib(35); // for example
 group.invoke(f);
 int result = f.getAnswer();
 System.out.println("Answer: " +
 result);
 }
 catch (InterruptedException ex) {}
 }

 int seqFib(int n) {
 if (n <= 1) return n;
 else return seqFib(n−1) + seqFib(n−2);
 }
}

This version runs at least thirty times faster than an equivalent
program in which each new task is run in a new
java.lang.Thread on the platforms described in section 4.
It does so while maintaining the intrinsic portability of
multithreaded Java programs. There are only two tuning
parameters of typical interest to programmers:

• The number of worker threads to construct, which should
ordinarily correspond to the number of CPUs available on a
platform (or fewer, to reserve processing for other unrelated
purposes, or occasionally more, to soak up non−
computational slack).

• A granularity parameter that represents the point at which
the overhead of generating tasks outweighs potential
parallelism benefits. This parameter is typically more
algorithm−dependent than platform−dependent. It is
normally possible to settle on a threshold that achievesgood
results when run on a uniprocessor, yet still exploits
multiple CPUs when they are present. As a side−benefit, this
approach meshes well with JVM dynamic compilation
mechanics that optimize small methods better than
monolithic procedures. This, along with data locality
advantages, can cause fork/join algorithms to outperform
other kinds of algorithms even on uniprocessors.

class ATask
 extends FJTask {
 public void run() {
 split...
 fork...
 join...
 compose...
 }
}

Task

Task

Worker Worker

Task

2.1 Work−Stealing
The heart of a fork/join framework lies in its lightweight
scheduling mechanics.FJTask adapts the basic tactics
pioneered in the Cilk work−stealing scheduler:

• Each worker thread maintains runnable tasks in its own
scheduling queue.

• Queues are maintained as double−ended queues (i.e.,
deques, usually pronounced "decks"), supporting both LIFO
push and pop operations, as well as a FIFOtake
operation.

• Subtasks generated in tasks run by a given worker thread
are pushed onto that workers own deque.

• Worker threads process their own deques in LIFO
(youngest−first) order, by popping tasks.

• When a worker thread has no local tasks to run, it attempts
to take ("steal") a task from another randomly chosen
worker, using a FIFO (oldest first) rule.

• When a worker thread encounters ajoin operation, it
processes other tasks, if available, until the target task is
noticed to have completed (viaisDone). All tasks
otherwise run to completion without blocking.

• When a worker thread has no work and fails to steal any
from others, it backs off (via yields, sleeps, and/or priority
adjustment − see section 3) and tries again later unless all
workers are known to be similarly idle, in which case they
all block until another task is invoked from top−level.

As discussed in more detail in [5], the use of LIFO rules for
each thread processing its own tasks, but FIFO rules for stealing
other tasks is optimal for a wide class of recursive fork/join
designs. Less formally, the scheme offers two basic advantages:

It reduces contention by having stealers operate on the opposite
side of the deque as owners. It also exploits the property of
recursive divide−and−conquer algorithms of generating "large"
tasks early. Thus, an older stolen task is likely to provide a
larger unit of work, leading to further recursive decompositions
by the stealing thread.

As one consequence of these rules, programs that employ
relatively small task granularities for base actions tend to run
faster than those that only use coarse−grained partitioning or
those that do not use recursive decomposition. Even though
relatively few tasks are stolen in most fork/join programs,
creating many fine−grained tasks means that a task is likely to
be available whenever a worker thread is ready to run it.

3. IMPLEMENTATION
The framework has been implemented in about 800 lines of pure
Java code, mainly in classFJTaskRunner , a subclass of
java.lang.Thread . FJTasks themselves maintain only a
boolean completion status, and perform all other operations via
delegation to their current worker threads. The
FJTaskRunnerGroup class serves to construct worker
threads, maintains some shared state (for example, the identities
of all worker threads, needed for steal operations), and helps
coordinate startup and shutdown.

More detailed implementation documentation is available inside
the util.concurrent package. This section discusses only
two sets of problems and solutions encountered when
implementing this framework: Supporting efficient deque
operations (push , pop , and take), and managing the steal
protocol by which threads obtain new work.

3.1 Deques
To enable efficient and scalable execution, task management
must be made as fast as possible. Creating, pushing, and later
popping (or, much less frequently, taking) tasks are analogs of
procedure call overhead in sequential programs. Lower overhead
enables programmers to adopt smaller task granularities, and in
turn better exploit parallelism.

Task allocation itself is the responsibility of the JVM. Java
garbage collection relieves us of needing to create a special−
purpose memory allocator to maintain tasks. This substantially
reduces the complexity and lines of code needed to implement
FJTasks compared to similar frameworks in other languages.

The basic structure of the deque employs the common scheme
of using a single (although resizable) array per deque, along
with two indices: The top index acts just like an array−based
stack pointer, changing uponpush andpop . The base index
is modified only bytake . SinceFJTaskRunner operations
are all intimately tied to the concrete details of the deque (for
example, fork simply invokespush), this data structure is
directly embedded in the class rather than being defined as a
separate component.

Because the deque array is accessed by multiple threads,
sometimes without full synchronization (see below), yet
individual Java array elements cannot be declared as
volatile , each array element is actually a fixed reference to a
little forwarding object maintaining a singlevolatile
reference. This decision was made originally to ensure
conformance with Java memory rules, but the level of
indirection that it entails turns out to improve performance on
tested platforms, presumably by reducing cache contention due

Popping

Stealing

TopBase
Deque

Pushing

to accesses of nearby elements, which are spread out a bit more
in memory due to the indirection.

The main challenges in deque implementation surround
synchronization and its avoidance. Even on JVMs with
optimized synchronization facilities[2], the need to obtain locks
for every push and pop operation becomes a bottleneck.
However, adaptations of tactics taken in Cilk[5] provide a
solution based on the following observations:

• The push and pop operations are only invoked by owner
threads.

• Access to thetake operation can easily be confined to one
stealing thread at a time via an entry lock ontake . (This
deque lock also serves to disabletake operations when
necessary.) Thus, interference control is reduced to a two−
party synchronization problem.

• The pop and take operations can only interfere if the
deque is about to become empty. Otherwise they are
guaranteed to operate on disjoint elements of the array.

Defining thetop andbase indices asvolatile ensures that
a pop and take can proceed without locking if the deque is
sure to have more than one element. This is done via a Dekker−
like algorithm in which push pre−decrements top :
 if (−−top >= base) ...
and take pre−increments base :
 if (++base < top) ...
In each case they must then check to see if this could have
caused the deque to become empty by comparing the two
indices. An asymmetric rule is used upon potential conflict: pop
rechecks state and tries to continue after obtaining the deque
lock (the same one as held bytake), backing off only if the
deque is truly empty. Atake operation instead just backs off
immediately, typically then trying to steal from a different
victim. This asymmetry represents the only significant departure
from the otherwise similar THE protocol used in Cilk.

The use ofvolatile indices also enables thepush operation
to proceed without synchronization unless the deque array is
about to overflow, in which case it must first obtain the deque
lock to resize the array. Otherwise, simply ensuring thattop is
updated only after the deque array slot is filled in suppresses
interference by any take .

Subsequent to initial implementation, it was discovered that
several JVMs do not conform to the Java Memory Model [6]
rule requiring accurate reads after writes of pairs ofvolatile
fields. As a workaround, the criterion forpop to retry under
lock was adjusted to trigger if there appear to betwo or fewer
elements, and thetake operation added a secondary lock to
ensure a memory barrier. This suffices as long as at most one
index change is missed by the owner thread (which holds here
for platforms that otherwise maintain proper memory order
when reading volatile fields), and causes only a tiny
slowdown in performance.

3.2 Stealing and Idling
Worker threads in work−stealing frameworks know nothing
about the synchronization demands of the programs they are
running. They simply generate, push, pop, take, manage the
status of, and execute tasks. The simplicity of this scheme leads
to efficient execution when there is plenty of work for all
threads. However, this streamlining comes at the price of relying
on heuristics when there is not enough work; i.e., during startup

of a main task, upon its completion, and around global full−stop
synchronization points employed in some fork/join algorithms.

The main issue here is what to do when a worker thread has no
local tasks and cannot steal one from any other thread. If the
program is running on a dedicated multiprocessor, then one
could make the case for relying on hard busy−wait spins looping
to try to steal work. However, even here, attempted steals
increase contention, which can slow down even those threads
that are not idle (due to locking protocols in section 3.1).
Additionally, in more typical usage contexts of this framework,
the operating system should somehow be convinced to try to run
other unrelated runnable processes or threads.

The tools for achieving this in Java are weak, have no
guarantees (see [6, 7]), but usually appear to be acceptable in
practice (as do similar techniques described for Hood[3]). A
thread that fails to obtain work from any other thread lowers its
priority before attempting additional steals, performs
Thread.yield between attempts, and registers itself as
inactive in its FJTaskRunnerGroup . If all others become
inactive, they all block waiting for additional main tasks.
Otherwise, after a given number of additional spins, threads
enter a sleeping phase, where they sleep (for up to 100ms) rather
than yield between steal attempts. These imposed sleeps can
cause artificial lags in programs that take a long time to split
their tasks. But this appears to be the best general−purpose
compromise. Future versions of the framework may supply
additional control methods so that programmers can override
defaults when they impact performance.

4. PERFORMANCE
In these times of nearly continuous performance improvements
of compilers and JVMs, performance measurements are only of
transient value. However, the metrics reported in this section
reveal some basic properties of the framework.

A collection of seven fork/join test programs are briefly
described in the following table. These programs are adaptations
of those available as demos in theutil.concurrent
package. They were selected to show some diversity in the kinds
of problems that can be run within this framework, as well as to
obtain results for some common parallel test programs.

Program Description

Fib The Fibonnaci program shown in section 2,
run with argument 47 and granularity
threshold 13.

Integrate Recursive Gaussian quadrature of

2⋅iB1⋅x 2⋅iB1 summing over odd

values of i from 1 to 5 and integrating from
−47 to 48.

Micro Best−move finder for a board game, run
with a lookahead of 4 moves.

Sort Merge/Quick sort (based on an algorithm
from Cilk) of 100 million numbers.

MM Multiply 2048 X 2048 matrices of doubles.

LU Decompose 4096 X 4096 matrix of doubles.

Jacobi Iterative mesh relaxation with barriers: 100
steps of nearest neighbor averaging on a
4096 X 4096 matrix of doubles.

For the main tests, programs were run on a 30−CPU Sun
Enterprise 10000 running the Solaris Production 1.2 JVM (an
early version of the 1.2.2_05 release) on Solaris 7. The JVM
was run with environment parameters selecting "bound threads"
for thread mappings, and memory parameters discussed in
section 4.2. A few additional measurements reported below were
run on a 4−CPU Sun Enterprise 450.

Programs were run with very large input parameters in order to
minimize timer granularity and JVM warm−up artifacts. Some
other warm−up effects were avoided by running an initial
problem set before starting timers. Most data are medians of
three runs, but some (including most follow−up measurements
in sections 4.2−4.4) only reflect single runs so are a bit noisy.

4.1 Speedups
Scalability measurements were obtained by running the same
problem set using worker thread groups of size 1 ... 30. There is

no way to know whether the JVM always mapped each thread to
a different CPU when available. While there is no evidence
about this either way, it is possible that the lags to map new
threads to CPUs increased with numbers of threads and/or
varied systematically across the different test programs.

However, in general, the results show that increasing the number
of threads reliably increased the number of CPUs employed.

Speedups are reported as Timen / Time1. The best overall
speedup was seen for the integration program (speedup of 28.2
for 30 threads). The worst was for the LU decomposition
program (speedup of 15.35 for 30 threads).

Another way of measuring scalability is in terms of task rates,
the average time taken to execute a single task (which may be
either a recursive or a leaf step). The following figure shows
data from a single instrumented run capturing task rates. Ideally,
the numbers of tasks processed per unit time per thread should
be constant. The fact that they generally slightly decrease with
numbers of threads indicates some scalability limitations. Note
the fairly wide difference in task rates, reflecting differences in
task granularities. The smallest tasks sizes are seen in Fib,
which even with a threshold setting of 13, generated and
executed a total of 2.8 million tasks per second when run with
30 threads.

Four factors appear to account for tail−offs in speedups in those
programs that did not scale linearly. Three of them are common
to any parallel framework, but we’ll start with one unique to
FJTask (as opposed to Cilk etc), GC effects.

4.2 Garbage Collection
In many ways, modern GC facilities are perfect matches to
fork/join frameworks: These programs can generate enormous
numbers of tasks, nearly all of which quickly turn into garbage
after they are executed. At any given time, deterministic
fork/join programs require only at mostp (where p is the
number of threads) times thebookkeeping space that would be
required for sequential versions of these programs[10].
Generational semispace copying collectors (including the one in
the JVM used for these measurements − see [1]) cope with this
well because they only traverse and copy non−garbage cells. By
doing so, they evade one of the trickiest problems in manual
parallel memory management, tracing memory that is allocated
by one thread but then used by another. The garbage collector is
oblivious to the origin of memory, so need not deal with such
issues.

As a simple indicator of the general superiority of generational
copying collection, a four−thread run of Fib that executes in 5.1
seconds when using the memory settings used in the main
experiments reported here runs in 9.1 seconds if the generational

Fib Micro Integ MM LU Jaco
bi

Sort

0

100

200

300

400

500

600

700

Times

S
ec

on
ds

Fib Micr
o

Inte−
grat

MM LU Jaco
bi

Sort

0

20000

40000

60000

80000

100000

120000

Task rates

T
as

ks
/s

ec
 p

er
 th

re
ad

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

0

5

10

15

20

25

30

Speedups

Ideal

Fib

Micro

Integ

MM

LU

Jacobi

Sort

Threads

S
pe

ed
up

s

copying phase is disabled on this JVM (in which case this JVM
relies entirely on mark−sweep).

However, these GC mechanisms turn into scaling problems
when memory is allocated at such a high rate that threads must
be stopped nearly continuously to perform collections. The
following figure shows the difference in speedups across three
memory settings (this JVM supports optional arguments to set
memory parameters): with the default 4 megabyte semispaces,
with 64 megabyte semispaces, and with the amount of memory
scaled to the number of threads (2 + 2p megabytes). With
smaller semispaces, the overhead of stopping threads and
collecting garbage starts to impact scaling as the garbage−
generation rate climbs due to additional threads.

In light of these results, 64m semispaces were used for all other
test runs. A better policy would have been to scale the amount
of memory to the number of threads in each test. (As seen in the
figure, this would have caused all speedups to appear slightly
more linear.). Alternatively, or in addition, program−specific
task granularity thresholds could be increased proportionally
with numbers of threads.

4.3 Memory Locality and Bandwidth
Four of the test programs create and operate on very large
shared arrays or matrices: Sorting numbers, and multiplying,
decomposing or performing relaxation on matrices. Of these,
sorting is probably the most sensitive to the consequences of
having to move data around processors, and thus to the
aggregate memory bandwidth of the system as a whole. To help
determine the nature of these effects, the Sort program was
recast into four versions, that sorted bytes, shorts, ints, and
longs respectively. Each version sorted data only in the range of
0...255, to ensure that they were otherwise equivalent. The wider
the data elements, the more memory traffic.

The results show that increased memory traffic leads to poorer
speedups, although they do not provide definitive evidence that
this is the only cause of tail−offs.

Element width also impacts absolute performance. For example,
using only one thread, sorting bytes took 122.5 seconds, while
sorting longs took 242.4 seconds.

4.4 Task Synchronization
As discussed in section 3.2, work−stealing frameworks
sometimes encounter problems dealing with frequent global
synchronization of tasks. The worker threads continue to poll for
more work even though there isn’t any, thus generating
contention, and, inFJTask , sometimes even forcing threads
into idle sleeps.

The Jacobi program illustrates some of the consequent issues.
This program performs 100 steps, where in each step, all cells
are updated according to a simple nearest neighbor averaging
formula. A global (tree−based) barrier separates each step. To
determine the magnitude of synchronization effects, a version of

this program was written to synchronize only after every 10
steps. The scaling differences show the impact of the current
policy, and indicate the need to include additional methods in
future versions of this framework to allow programmers to
override default parameters and policies. (Note however that
this graph probably slightly exaggerates pure synchronization
effects, since the 10−step version is also likely to maintain
somewhat greater task locality.)

1 3 5 7 9 1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

0

5

10

15

20

25

30

Sync Effects: Jacobi

Ideal

1step/sync

10steps/−
sync

Threads

S
pe

ed
up

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

0

5

10

15

20

25

30

Memory bandwidth effects: Sorting

Ideal

Bytes

Shorts

Ints

Longs

Threads

S
pe

ed
up

1 3 5 7 9 1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

0

5

10

15

20

25

30

GC Effects: Fib

Ideal

Fib−64m

Fib−4m

Fib−scaled

Threads

S
pe

ed
up

4.5 Task Locality
FJTask , like other fork/join frameworks, is optimized for the
case where worker threads locally consume the vast majority of
the tasks they create. When this does not occur, performance can
suffer, for two reasons:

• Stealing tasks encounters much more overhead than does
popping tasks.

• In most programs in which tasks operate on shared data,
running your own subdivided task is likely to maintain better
locality of data access.

As seen in the figure, in most programs, the relative number of
stolen tasks is at most a few percent. However, the LU and MM
programs generate larger imbalances in workloads (and thus
relatively more stealing) as the number of threads increase. It is
possible that some algorithmic tuning of these programs could
reduce this effect, and in turn lead to better speedups.

4.6 Comparisons to Other Frameworks
It is impossible to perform definitive or even very meaningful
measurements comparing programs across languages and
frameworks. However, relative measurements can at least show
some of the basic advantages and limitations of theFJTask
framework versus similar frameworks written in other languages
(here, C and C++). The following chart compares performance
of programs that were either based on or are similar to those
supplied with the Cilk, Hood, Stackthreads, and/or Filaments
distributions. All of these were run with 4 threads on a 4−CPU
Enterprise 450. To avoid reconfiguring other frameworks or
their test programs, all tests were run with smaller problems sets
than used above. All results represent the best of three runs,
using the compiler and run−time settings that appeared to
provide the fastest times. Fib was run without any granularity
threshold; i.e., an implicit threshold of 1. (The "prune" setting in
Filaments Fib was set to 1024, which causes it to behave more
similarly to the other versions.)

Speedups going from one to four threads were very similar
(between 3.0 and 4.0) across the different frameworks and test
programs, so the accompanying chart focuses on differences in
absolute performance. However, because the multithreading
aspects of all these frameworks are all fast, most of these
differences reflect differences in application−specific code
quality stemming from different compilers, optimization
switches, and configuration parameters. In fact, it is likely that

different choices among these than used here could produce
nearly any relative performance ranking among these
frameworks in many high−performance applications.

FJTask generally performs worse (on this JVM) on programs
that mainly do floating point computations on arrays and
matrices. Even though JVMs are improving, they are still not
always competitive with powerful back−end optimizers used in
C and C++ programs. Although not shown in this chart,
FJTask versions ofall programs ran faster than versions of
programs in these other frameworks when they were compiled
without optimization enabled, and some informal tests suggest
that most of the remaining differences are due to array bounds
checks and related runtime obligations. These are, of course,
issues and problems that are attracting much attention and effort
by JVM and compiler developers. The observed differences in
code quality for computationally intensive programs are likely
to diminish.

5. CONCLUSIONS
This paper has demonstrated that it is possible to support
portable, efficient, scalable parallel processing in pure Java, and
to provide a convenient API for programmers who can exploit
the framework by following only a few simple design rules and
design patterns (as presented and discussed in [7]). The
observed performance characteristics of the sample programs
measured here both provide further guidance for users of the
framework, and suggest some areas of potential improvement to
the framework itself.

Even though scalability results were shown only for a single
JVM, some of the main empirical findings should hold more
generally:

• While generational GC generally meshes well with
parallelism, it can hinder scalability when garbage
generation rates force very frequent collections. On this
JVM, the underlying cause appears to be that stopping
threads for collection takes time approximately proportional
to the number of running threads. Because more running
threads generate more garbage per unit time, overhead can
climb approximately quadratically with numbers of threads.
Even so, this significantly impacts performance only when
the GC rate is relatively high to begin with. However, the
resulting issues invite further research and development of
concurrent and parallel GC algorithms. The results presented

1 3 5 7 9 1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

Locality effects

Fib

Micro

Integrate

MM

LU

Jacobi

Sort

Threads

P
ro

po
rt

io
n

st
ol

en

Fib MM Sort LU Intg Jac

0

1

2

3

4

5

6

7

8

Other Frameworks

FJTask

Cilk

Hood

Stack−
threads

Filaments

S
ec

on
ds

here additionally demonstrate the desirability of providing
tuning options and adaptive mechanisms on multiprocessor
JVMs to scale memory to the number of active processors.

• Most scalability issues reveal themselves only when
programs are run using more CPUs than are even available
on most stock multiprocessors.FJTask (as well as other
fork/join frameworks) appear to provide nearly ideal
speedups for nearly any fork/join program on commonly
available 2−way, 4−way, and 8−way SMP machines. The
present paper appears to be the first reporting systematic
results for any fork/join framework designed for stock
multiprocessors run on more than 16 CPUs. Further
measurements are needed to see if the patterns of results
seen here hold in other frameworks as well.

• Characteristics of application programs (including memory
locality, task locality, use of global synchronization) often
have more bearing on both scalability and absolute
performance than do characteristics of the framework, JVM
or underlying OS. For example, informal tests showed that
the careful avoidance of synchronization in deques
(discussed in section 3.1) has essentially no impact on
programs with relatively low task generation rates such as
LU. However, the focus on keeping task management
overhead to a minimum widens the range of applicability
and utility of the framework and the associated design and
programming techniques.

In addition to incremental improvements, future work on this
framework may include construction of useful applications (as
opposed to demos and tests), subsequent evaluations under
production program loads, measurements on different JVMs,
and development of extensions geared for use with clusters of
multiprocessors.

6. ACKNOWLEDGMENTS
This work was supported in part by a collaborative research
grant from Sun Labs. Thanks to Ole Agesen, Dave Detlefs,
Christine Flood, Alex Garthwaite, and Steve Heller of the Sun
Labs Java Topics Group for advice, help, and comments. David
Holmes, Ole Agesen, Keith Randall, Kenjiro Taura, and the
anonymous referees provided useful comments on drafts of this
paper. Bill Pugh pointed out the read−after−write limitations of
JVMs discussed in section 3.1. Very special thanks to Dave Dice
for reserving time and performing test runs on the 30−way
Enterprise.

7. REFERENCES
[1] Agesen, Ole, David Detlefs, and J. Eliot B. Moss. Garbage

Collection and Local Variable Type−Precision and
Liveness in Java Virtual Machines. InProceedings of 1998
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 1998.

[2] Agesen, Ole, David Detlefs, Alex Garthwaite, Ross
Knippel, Y.S. Ramakrishna, and Derek White. An Efficient
Meta−lock for Implementing Ubiquitous Synchronization.
In Proceedings of OOPSLA ’99, ACM, 1999.

[3] Arora, Nimar, Robert D. Blumofe, and C. Greg Plaxton.
Thread Scheduling for Multiprogrammed Multiprocessors.
In Proceedings of the Tenth Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA), Puerto
Vallarta, Mexico, June 28 − July 2, 1998.

[4] Blumofe, Robert D. and Dionisios Papadopoulos.Hood: A
User−Level Threads Library for Multiprogrammed
Multiprocessors. Technical Report, University of Texas at
Austin, 1999.

[5] Frigo, Matteo, Charles Leiserson, and Keith Randall. The
Implementation of the Cilk−5 Multithreaded Language. In
Proceedings of 1998 ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), 1998.

[6] Gosling, James, Bill Joy, and Guy Steele.The Java
Language Specification, Addison−Wesley, 1996.

[7] Lea, Doug. Concurrent Programming in Java, second
edition, Addison−Wesley, 1999.

[8] Lowenthal, David K., Vincent W. Freeh, and Gregory R.
Andrews. Efficient Fine−Grain Parallelism on Shared−
Memory Machines.Concurrency−Practice and Experience,
10,3:157−173, 1998.

[9] Simpson, David, and F. Warren Burton. Space efficient
execution of deterministic parallel programs.IEEE
Transactions on Software Engineering, December, 1999.

[10]Taura, Kenjiro, Kunio Tabata, and Akinori Yonezawa.
"Stackthreads/MP: Integrating Futures into Calling
Standards." InProceedings of ACM SIGPLAN Symposium
on Principles & Practice of Parallel Programming
(PPoPP), 1999.

