Peer-to-Peer Distributed Computing Applied to
Prototypical Problems.
by

Shirish Ranjit*
April 16, 2004

A Thesis submitted to the Faculty
of the Gradute School,
Marquette Univeristy

in Partial Fulfillment of
the Requirements for
the Degree of
Master of Science in Computing.

Milwaukee, Wisconsin
May, 2004

*Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881

1



Abstract

The goal of the project is to develop a Peer-to-Peer (P2P) Distributed Computing
environment, named Octopus, such that we can capitalize unused computer resources
to solve computing intensive problems as well as simple problems. The main features
of the architecture are

1. Solve large scale problems
2. Capitalized unused computer resources (wired and wireless)
3. Be independent of problem type

4. Scalable

5. Be fault tolerant and available

The Octopus is designed to solve a problem by pulling idle resources from the net-
work of computers that are either wired or wireless (mobile). The Octopus architecture
is independent of the type of problem. It can solve a large-scale problem that requires
a lot of computing resources as well as small requests. For example, when users are
not using the desktops in an office, the processing time of those computers can be used
to solve a problem that benefits the company.

A processing intensive problem is a prototypical problem for this type of comput-
ing. For example, a portfolio optimization problem is computing intensive. With the
Octopus, we can optimize buys and sells from a universe of stocks that maximizes the
return of the portfolio. We solve the problem with idle resources in the enterprise
rather than with a dedicated large expensive server.

In essence, in a P2P Distributed Computing environment, the data for the problem
is sliced into small units of work (work unit) and sent to different computers (vol-
unteers). These volunteers do not know the requestors of work unit or their peers.
A publisher, a volunteer, publishes the work unit into a space. Volunteers with idle
resources collect a work unit from the space to solve the problem. These volunteers
process according to the instructions they receive in the work unit. Once their unit
of work is complete, the results are published into the space. The publisher acquires
solutions from the space. This environment is like a group of computers working to
solve a problem with little knowledge about their peers.

We take couple of problems to demonstrate that the prototype of the Octopus
architecture. The problems that we chose are finding a stock quote and a Monte
Carlo simulation of value of a simple stock portfolio. We choose two different types
of problem to demonstrate that the Octopus architecture is truly independent of the
type of problems.

We have designed, developed, and demonstrated that it is a formidable solution for
common business problems by using wired or wireless resources. Our simple demonstra-
tion has shown that the Octopus architecture is a viable framework for P2P Distributed
Computing. Though the current demonstration version contains a minimal set of func-
tion, we made a case that this is a viable product for solving business problem and
managing corporate information.
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1 Introduction

Peer-to-Peer (P2P) networks and Distributed Computing are topics that interest the
scientific and Internet communities. Since the birth of the Internet, Peer-to-Peer (P2P)
networking and Distributed Computing have been topics for research. Similarly, Finan-
cial Portfolio Optimization has been a topic of research in the financial communities.

In this paper, we develop P2P distributed computing to solve a problem. Here, we
take a stock quote problem and a Monte Carlo simulation of a financial portfolio to
demonstrate an implementation of our P2P distributed computing system.

In this chapter, we give a top-down overview of the layers of services that comprise

our system. We can organize our system in four primary layers of services:

e Problem: any CPU-consuming problem. For the purpose of illustration, we take

a interesting Financial Problem (FP).

e Peer-to-Peer distributed computing system, ‘Octopus:’ this layer consists of two

sub-layers as shown in Figure 1.

— Distributed Communication Client (DCC).

— Distributed Communication Space (DCS).

e JavaSpace
e Jini and RMI

In subsequent sections of this chapter, we give a high-level overview of each layer.
Then, we discuss each layer in detail in subsequent chapters.

In this introductory chapter, we have given a top-down overview of the layers that
comprise a P2P Distributed Computing environment. In the following chapters, we take
a bottom up approach to describe the proposed architecture, building layers from the
base to upper layer. In Chapter 2, we give an overview of relevant research publications
in P2P networking, distributed Computing and financial optimization. Then, we start

assembling the building blocks of our P2P Distributed Computing environment, and
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Figure 1: Layers and Services

construct the environment. We start with the technology base, Jini and RMI, in
Chapter 3. Then, we describe JavaSpace technology in Chapter 4. Once the technology
foundation has been laid, we present Octopus and its components DCS and DCC in
Chapter 5. At this point, we now have an environment for P2P Distributed Computing.
The final layer is that of the problem. A FP is developed and described in Chapter 6.
In Chapter 7, we present the system benefits and risks. We give a detailed step-by-step
description of the Octopus implementation in Chapter 8. We present our conclusions

and extensions of the Octopus model and possible future directions in the Chapter 9.

1.1 Problem Layer

Financial ‘Engineers’ employ various mathematical tools for analyzing large amounts
of data. They explore not only mathematical and statistical models but also Artificial
Neural Network (ANN) models. These models are used for valuations and forecasting

of financial instruments.



We choose a problem to illustrate our P2P and distributed computing architecture
and to demonstrate that the Octopus framework works. We chose a stock quote prob-
lem and a Monte Carlo simulation of a simple stock portfolio. From here on, we refer

to these as Financial Problems (FP). We describe the problem in detail in Chapter 6.

1.2 Octopus Layer

In this section, we give definitions of P2P networking, distributed computing, and P2P
distributed computing. Then, we give a brief overview of Octopus, our architecture
for P2P distributed computing. Before going into details of the Octopus system in
Chapter 5, we first give a brief background of Peer-to-Peer (P2P) networking and

Distributed Computing.
1.2.1 Peer-to-Peer Networking

Peer-to-Peer (P2P) networking is an architecture that supports sharing of resources
and services among a collection of computers. Although most of the Computer Science
communities might agree with the previous statement, there is not an industry standard
definition for P2P networking. Schollmeier [20] gave definitions for P2P networking.
He gave a general definition from which he classified P2P networking further into two

sub-definitions:

Definition 1 [20] Peer-to-Peer (P2P) networking is a community of computers that
shares resources such as processing power, storage, contents, and so on. Shared re-
sources are directly available to all participants in the community without passing
through intermediary entities. That is, there is no server as in client-server models.

Here every participant is a publisher of services and also a consumer of services.

P2P networking can be further classified into two sub-definitions [20]. They are

“Pure” and “Hybrid” P2P networking:



Definition 2 [20] A network is a “pure” P2P network if it satisfies definition 1, and
if any single arbitrarily chosen entity in the network can be removed without hampering

the network’s ability to provide all services.

Definition 3 [20] A network is a “hybrid” P2P network if it satisfies definition 1,

and a central entity is necessary to provide parts of the offered network services.

We discuss Schollmeier’s definitions further in Chapter 2. In the following section,
we define Distributed Computing. Then in the subsequent section, we give a definition

of P2P distributed computing.
1.2.2 Distributed Computing

‘Distributed Computing’ is a collective way of working on a problem with a network
of computers. It involves sending pieces of a problem to a number of computers in a
network to achieve a ‘single goal.” A ‘single goal’ means either finding a result of a
problem or executing an algorithm. In the scientific community, distributed comput-
ing involves decomposing a problem into smaller pieces such that a small, less powerful
computer can process the information to achieve the single goal. Most distributed com-
puting models involve at least a server that manages data, connections to computers,
and a community of computers that are analyzing the data. For example, a search
on the Internet can take a long time for a single computer. Similarly, finding a signal
transmission from an alien source in a continuous data stream from a radio telescope
can take many years for a single super-computer. However, by decomposing a problem
and distributing the work, many computers can be use to solve the problem.

An example of a well known distributed system is The Search for Extraterrestrial In-
telligence (SETI) project. SETIQHOME is a distributed computing application, which
allows computers on the Internet to join the SETI project in searching for evidence
of signals from outer space. The SETI distributed computing system decomposes the

problem of searching for identifiable signals in radio-telescope data into smaller pieces



and distributes them to different computers on the Internet for analysis. After the
completion of their work, these computers send back their results to SETI for further
analysis. The SETI project is discussed further in the Chapter 2.

We have given a definition of P2P networking and distributed computing. We define

P2P Distributed Computing in the following subsection.

1.2.3 Peer-to-Peer Distributed Computing

Peer-to-Peer (P2P) Distributed Computing uses a P2P networking model to do dis-
tributed computing. In other words, using the P2P model, we distribute pieces of
a problem and related data to a community of computers in such a way that those
computers do not have to know who is requesting services. The P2P Distributed Com-
puting model has ‘Publishers’ and ‘Acquirers.” A publisher’s role is to provide requests,
for example a portion of a FP problem, while an acquirer’s role is to provide services
to requests, for example a solution to portion of a FP problem. We define requests as
‘Work Units.’

A ‘Work Unit’ is a portion of a whole problem with the property that it can be
processed independently. In a P2P Distributed Computing environment, it is the
responsibility of a publisher to provide a work unit and the responsibility of an acquirer
to service the request.

A P2P Distributed Computing model does not have a ‘server’ and a ‘servant’ con-
cept as in Distributed Computing. The P2P Distributed Computing model has pub-
lishers and acquirers. A publisher is the one who is requesting services from other peers
in the community. Similarly, acquirers are those peers who are providing services. In
this model, anyone can be a publisher, and anyone can be an acquirer.

We call our implementation of the P2P Distributed Computing model ‘Octopus.’
Octopus has two sub-layers. They are the ‘Distributed Communication Client
(DCCQC)’ and the ‘Distributed Communication Space (DCS)’ layers. The Dis-

tributed Communication Client layer is an application that resides in peer computers.
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DCC provides services to communicate among peers. The Distributed Communication
Space (DCS) layer is a communication hub, residing in a peer computer, providing
services to all peers for publishing work units and consuming work units. Hence, peers
communicate work units and results through DCS.

The system is analogous to the structure of an octopus, in the sense that it has
a central body with many tentacles. DCC applications (peer computers) are like the
tentacles of the octopus, and DCS (a JavaSpace) is the central body. Figure 2 illustrates

the P2P Distributed Computing architecture.
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Figure 2: Octopus, the Peer-to-Peer Distributed Computing Architecture

Octopus is our P2P distributed computing system, which is a vehicle for distributing
problems defined in a problem layer among volunteer computers. It is also a medium
through which volunteer computers communicate solutions to publishers of problems.
Architecting and developing Octopus is the focus of this thesis.

Octopus’ components DCS and DCC depend on a JavaSpace layer and a Jini/RMI

layer. DCS uses a JavaSpace layer as a communication hub. It is in this JavaSpace layer

11



that publishers request services and acquirers search for these requests. A JavaSpace
is a Jini service.
In the following sections, we provide a brief introduction to JavaSpace, Jini, and

RMI.

1.3 JavaSpace

In this section, we give a brief introduction to Sun Microsystems’ JavaSpace technology;
we discuss JavaSpace in detail in Chatper 4, along with additional key specifications.

A JavaSpace is a network-accessible “shared-memory” [7] space in which remote
processors can access (write or take) objects concurrently. Octopus’ Distributed Com-
munication Space (DCS) is an example of an implementation of a JavaSpace. All the
peers publish their work units and results in this JavaSpace. They also search for work
units and results for consumption here.

Sun Microsystems provides not only the specification for JavaSpace, but also its
implementation. We have used this implementation in Octopus. JavaSpace is built as
Jini services. Communication is provided through RMI. We introduce Jini and RMI

in the following section.

1.4 Jini/RMI

In this section, we introduce Sun Microsystems’ Jini and RMI technologies. Jini and
RMI are the foundations of JavaSpace services. Jini technology defines a set of ap-
plication programming interfaces (APIs) and network protocols to build and deploy
distributed systems. RMI is a means of communication between these Java applica-
tions.

Jini specifies a set of APIs and network protocols for building distributed systems
that are organized as federations of services. A federation of services is a set of avail-
able services on the network that a consumer can request to accomplish a task [22].

The concept of ‘Service’ is the most important in Jini technology because a service is

12



a basic entity that can be consumed or published by hardware devices, software, com-
munications channels, human users, or other services. For example, a Jini enabled disk
drive could offer a ‘storage’ service. We discuss Jini technology in detail in Chapter 3.

RMI (Remote Method Invocation) specifies a set of APIs for applications to in-
voke processing on remote objects and to facilitate sharing of resources across systems
throughout a network. The ability to invoke a ‘method’ on a remote object offers a
model for distributing Java objects in a network. A ‘method’ is a function in an ob-
ject designed to accomplish a pre-specified task. Therefore, RMI specifications provide
a framework for communication among applications to accomplish a single goal. We
discuss relevant specifications of RMI in Chapter 3.

We discussed the overview of the paper in this chapter. We present current litera-

ture reviews in the following chapter.
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2 Literature Review

In this chapter, we survey the literature of Peer-to-Peer networking, distributed com-
puting, Java technology (J2EE, Jini, JavaSpace), and financial portfolio theory. The
intent of this chapter is to give an overview of research and development in these

respective fields.

2.1 Peer-to-Peer (P2P) Networking

Peer-to-Peer Networking has been a topic of research in the networking community
focusing on networking for collaborative use of computing resources. The collaborations
include file sharing, storage resource sharing, and CPU resource sharing. In this section,
we survey some of relevant research.

The Communications of the ACM devoted the first half of the February 2003 issue
on the P2P Networking articles. This is an indication of the importance of the topic
in the industry. The special issue had viewpoints, survey articles, and a few technical
articles. We discuss few of those articles below.

The viewpoint by Schoder and Fischbach [19] presented P2P networking and also
raised issues of network control, costs, security, interoperability, and metadata. In the
paper, we raise those issues and discuss mitigating strategies.

Agre [1] discussed socio-economic and political impacts due to the use of P2P net-
working. Agre presented four theories of relationship between political institutions,
socio-economic structures, and information technology. He especially cited Thorstein
Veblen, a Norweigian- American economist, and Friedrich Hayek, an Austrian economist,
in presenting his arguments on changes that can be brought about by P2P computing.
It is conceivable that the P2P architecture can not only revolutionize how information
is managed but also revolutionize our socio-economic and political institutions.

Lee [15] presented a survey of current users of P2P file sharing systems. The survey

was focused on finding end-user perspectives on P2P systems. He surveyed the features
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of P2P file sharing systems. The survey showed that the top five features are fee, speed,
stability, reliability, and downloading technologies.

Kubiatowicz [13] discussed perils and problems associated with P2P computing. He
drew a parallel with thermodynamic system design. He made an argument that the
P2P system seemed chaotic as a thermodynamic system but it is manageable as long
as we solve the issues relating to P2P systems such as latency, security, scalability, and
availability. Those are the central issues in any P2P system, and we also discuss them
in our design and implementation chapters.

Balakrishnan et al. [2] were working to develop algorithmic building blocks for P2P
systems. They discussed their own and other researchers’ algorithms for performing
distributed lookup. P2P file sharing and storing systems’ designers can use these
algorithms with assurance about scalability of the lookup function compared to non-
scaling approaches in some grass-roots P2P implementations. The implementation of
these algorithms was made easier by the authors’ pointers to reference implementation
toolkits.

Schollmeier [20] laid out definitions of Peer-to-Peer networking, which we discussed
in Chapter 1. He described three definitions and the motivation behind cataloging P2P
networking into three broad groups.

In a Peer-to-Peer networks [6] article, Geoffrey gave an overview of P2P networking,
describing P2P features, technologies, and challenges. The article gave examples in-
cluding Napster, SETIQHOME, and Instant-messengers. The article contained many
pointers to P2P sites for file sharing and P2P resource sites.

According to Geoffrey’s article, Napster (www.napster.com) was developed by Shawn
Fanning in January 1999 during his freshman year at Northeastern University. Napster
is probably the most well known P2P system [6]. Fanning, a musician, developed the
software to share his music with his friends on campus. Napster became a way to share

files among a larger community. According to Schollmeier’s P2P definition, Napster is
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a hybrid P2P network.

At Napster’s peak, it had 75 million subscribers sharing approximately 10,000 music
files per second [6]. These statistics show that the Napster model is in some sense a
success story in P2P communities.

In the article [17], Manoj, Anjana, and Andrew describe P2P networking as an alter-
native information sharing model to the current client-server model. The article makes
a case for the advantages of P2P networking and presents challenges in implement-
ing the P2P model. The advantages the article presents are load balancing, dynamic
information repositories, redundancy, fault tolerance, content-based addressing, and
improved searches.

The article describes that decentralization can also bring chaos to the model im-
pacting on the quality of service (QoS). The strength of the decentralized model poses
a difficulty in providing security for the system. The strength of joining and leaving
the system at will also poses a possible connection problem in the network. The article
also raises issues of traffic redistribution when one member has the information that
everyone is requesting. The article summarizes, “More significantly, a private P2P net-
work in which users exchange decision-making information can control membership,
implement authentication schemes, and adopt standardized schemes to describe and
classify content.”

The article [3] by David Barkai describes P2P computing and its application. Barkai
bases his P2P computing on the characteristics of P2P rather than a formal definition.
The characteristics are resource sharing and direct communication among peers. The
article categorizes P2P applications into three broad categories: Distributed Comput-
ing, Content Sharing, and Collaboration. Distributed Computing means sharing CPU
resources. Content Sharing means sharing of files and storage, as in Napster. Collab-
oration means interaction of peers near real-time, for example, instant messaging and

audio and visual communications.
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The article presents architecture of an infrastructure for a P2P computing environ-
ment. It discusses a common P2P middleware architecture. First, the article presents

basic requirements:
e Lack of trust: Access must be granted to members.
e Hardware heterogeneity: Hardware is of different types.

e Software heterogeneity: The infrastructure should be able to integrate any type

of software.

e Network heterogeneity: The networks connecting peers differ in bandwidth and

latency.
e Scale: Members can be as few as two or as many as millions.
e Intermittency: The systems and configuration are not fixed and static.
e Location: Location of peers does not matter.
e Autonomy: Peers do not have to know about each other to achieve a goal.

e Local policies: A sub-group of peers may create policies to protect information.

Distance: Geographical distance is not an issue in the community.

The article explains how the basic requirements give rise to a common architecture for
a P2P networking. It makes the case by discussing the application and issues with
each category of P2P application.

The article raises technical challenges including Communication, Naming and Dis-
covery, Availability, Security, and Resource Management. It describes those issues and
possible solutions. The article concludes by recognizing that P2P networking technol-
ogy is in an evolutionary phase. It acknowledges that companies such as Microsoft and
Sun Microsystems have made progress, but there is still room for improvement and

room for research and development.
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2.2 Distributed Computing

Distributed computing has been a research topic since the birth of the computer. Early
research and developments in distributed computing have been in modeling hardware
rather than software. Computer engineers at major companies such as AT&T, Xerox,
and IBM, and at research institutions developed models for hardware to achieve dis-
tributed computing. Those studies and experiences set the stage for the modeling of
distributed software.

The “Search for Extra-Terrestrial Intelligence” (SETIQHOME,
http://setiathome.ssl.berkeley.edu/) project collects data from different radio telescopes,
and searches for evidence of Extra-Terrestrial Intelligence. Since an enormous volume
of data is collected from telescopes, processing those data takes many years to com-
plete, even for a fast super-computer. For this reason, SETIQGHOME takes advantage
of distributed computing to process the very large data set.

The SETIQHOME model is a ‘massively’ distributed computing model [11]. The
problem is sliced into smaller tasks, and each task is given to a participating client. A
server keeps track of participant clients and their work units. If a participant fails to
deliver results, the task is sent to different participant. The client application is run as
a screen saver such that the processing takes place only when the CPU is idle on the
client computer.

Our observation of the SETIQHOME architecture and implementation is that the
client software has memory of the data processed. The client application is able to
pick up where it has previously paused. Similarly, the server is able to piece together
results that it received from many clients that are processing various pieces of data at
any time.

The SETIQHOME project collects data from each radio telescope and stores the
collected data in high capacity tape drives. Then, the data is divided into 50 seconds

of a 20 kHz signal, which is 0.25 MB of data. “On the receiving end a 0.25 MB chunk
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will require 1.3 sec on an incoming T1 line of 190 kb/s, or 2.3 minutes on a 14.4 k
baud line. Upon completion (typically after several days) of the data analysis for each
chunk, a short message reporting candidate signals is presented to the customer and also
returned to Big Science and to the University of Washington for post-processing” [21].

The article [28] by Waldo, Wyant, Wollrath, and Kendall from Sun Microsystems
Laboratories sets a stage for distributed computing and its challenges. The authors
describe distributed computing by comparing it to local computing. The article de-
scribes the differences and challenges in distributed computing by comparing the same
issues in local computing. The article presents distributed computing more or less as
remote procedure call (RPC) extended to the object-oriented paradigm. In distributed
computing, nothing is known about a recipient other than that it supports a particu-
lar interface [28]. The article also raises fundamental issues pertaining to distributed

computing regardless of hardware or software model:

e Latency: The difference in time between a local object invocation and the invo-

cation of an operation on a remote object.

e Memory access: An issue with an access to a memory by a local processor or
a remote processor. The article presents two choices: either all memory access
must be controlled by the underlying system or the programmer must be aware

of the different types of access.

e Partial failure: One of the sub-system fails to respond. Since there is no global
state, no agents can determine if a component has failed and inform other com-

ponents about the failure. This is a central reality of distributed computing.

e Concurrency: The distributed environment introduces truly asynchronous oper-
ations; thus giving rise to problem of concurrency. The article does not mention
distributed computing specifically. However, it states that concurrency is either

handled entirely or not handled at all. There is no partial solution to concurrency.
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“One could take the position that the way an object deals with latency, memory
access, partial failure, and concurrency control is really an aspect of the implementation
of that object, and is best described as part of the “quality of service” provided by that
implementation” [28]. The authors argue that in addressing the quality of service of a
distributed system, issues of latency, memory access, partial failure, and concurrency
are also addressed. The argument is that these issues need to be addressed in any
implementation. By coding in a certain way, we can avoid partial failure, memory
access problems, and concurrency problems. However, the authors also claim that
robustness is not a function of implementations. Their position is the robustness is

inherent to the architecture and design of the distributed computing environment.

2.3 Peer-to-Peer Distributed Computing

The paper [5] is a white paper/case study by Intel Corporation applying Peer-to-Peer
computing to the financial industry, showing that it is possible to take advantage of a
firm’s technology investments by tapping into the unused resources of employees’ high-
performance PCs. The paper presents an architecture that takes advantage of existing
computer resources of a company to solve a complex portfolio pricing problem, a risk
hedge calculation, and a market and credit risk evaluation.

The type of distributed computing system presented in the paper is not a radical
departure from the traditional client/server hub-and-spoke architecture. The proposed
architecture uses the server to manage processing jobs, but relies on high-performance
desktop PCs to provide the processing power. The paper argues that the hybrid net-
work approach to distributed computing falls into the P2P network architecture be-
cause the PCs in the peer network can exchange information directly with one another.

The way the system works is that a large problem is divided into smaller work
units. A server distributes work units to idle PCs. If the computation is interrupted,

the server sends the work unit to another idle PC. The PCs process the given work unit
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and send results back to the server. The server manages all the work and combines all
results to produce the final product.

The architecture includes a managing server that sends tasks to a set of computers
called 1st-tier peers. Computers in the 1st-tier request help from computers in the
2nd-tier. The 2nd-tier peers only communicate to one 1st-tier peer. Hence, there is a
many to one relationship from a 2nd-tier peer to a lst-tier peer. This is more like a
cascading responsibility from managing server to peers. This architecture is closer to
distributed computing architecture than to P2P distributed computing architecture.

“Ultimately, financial services firms can benefit from increased utilization of desk-
top resources, regardless of their size. Larger firms can increase their return on in-
vestment (ROI) from high-performance desktop PCs, and smaller firms can become
increasingly competitive as the capital investment required for advanced computing
techniques falls” [5]. The benefit of using this type of architecture is to harness idle

CPU and bandwidth to solve CPU intensive problems.

2.4 Java Technology

The book by Freeman, Hupfer, and Arnold [7] lays out the foundation of distributed
computing using JavaSpaces. It is a good theoretical book on JavaSpace and its appli-
cation in distributed computing. It provides a very good theoretical background on the
JavaSpace specification. However, the book provides little help in developing a fully
functional sample program. It does not have a chapter on how to start a JavaSpace or
even how to install a JavaSpace.

The book by Halter [9] is a very practical book for writing a JavaSpace application.
It explains systematically building a simple JavaSpace program. Chapter 2 presents
the details for installing and running a JavaSpace. From Chapter 3 onwards, Halter
builds a simple application methodically. It starts with a simple program to find a

JavaSpace.
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The books Halter [9] and Freeman [7] are complimentary. Freeman [7] provides
theories behind JavaSpace technology, while Halter [9] provides implementation-specific
details.

The JavaSpace and the Jini specifications provide a detailed description of Java-
Space and Jini technologies. Those specifications are available at Sun Java site
http://java.sun.com under documents and API section. The website http://www.jini.org

also provides a portal to information on Jini.

2.5 Financial Portfolio Theory

In this section, we survey some relevant literature in finance.

The book by Brealey and Myers [4] covers corporate finance. It provides a back-
ground in valuation, risk analysis, financial decisions, and market efficiency. It de-
scribes market theories and hypotheses leading to market efficiency. It describes in
detail financial decisions such as debt policy, dividend payout, and issuing securities.

The article by Kumar, Tan, and Ghosh [14] uses four different models to forecast
foreign exchange rates. The rate forecasted is then passed through a rule-based trading
system to generate buys and sells on the foreign currency. The four models are ANN,
ANN with ARIMA, ANN with GARCH, and Random Walk Model (RWM). The article
concluded that the ANN model was better in forecasting ability. When used with
ARIMA and GARCH, ANN forecasting improved only slightly. The result showed
that the Random Walk Model outperformed all other models in forecasting direction.

The book by Reilly and Brown [18] covers investment analysis and portfolio man-
agement. It discusses theories, techniques, and methodologies for investment analysis.
It also presents many portfolio management techniques.

The technical document RiskMetrics [16] presents modeling techniques and theories
in measuring market risks in a portfolio. The document presents the Value at Risk

(VaR) method of measuring portfolio risk as well. It also discusses Monte Carlo simu-

22



lation of a portfolio value. The document is highly regarded in the financial industry.

The articles we discussed in this Chapter provide information on some work that
has been completed in the field. The knowledge of previous research is a foundation for
formulating the financial problem. In following Chapters, we describe the technology

that we use to implement the design of the Octopus architecture.
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3 Jini/RMI

Jini and RMI technologies are the foundations of the JavaSpace technology. The Java-
Space technology leverages Jini’s distributed architecture and RMI’s communication
protocol. We present the basics of Jini and RMI in this chapter before we describe

JavaSpace in the next chapter.

3.1 Jini

In this section, we provide a detailed overview of Sun Microsystems’ Jini technology
and cite additional relevant specifications. We use the Jini specifications [24] and [22]
as out primary source literature.

Jini technology is a set of application programming interfaces (APIs) and services
that provides a framework upon which a dynamic distributed system can be built and
deployed. The Jini framework provides a technological foundation to extend a Java
application interface from a single virtual machine to a network of virtual machines [23].
It exploits Java application interfaces and their characteristics to simplify construction
of a distributed system. Its architecture adds mechanisms that allow components in
a distributed system to easily share among entire networked members. Jini uses RMI
to move objects in the network. The framework has built-in mechanisms for members
to join and leave from a network dynamically at will. This is where the power of Jini
architecture lies, by allowing members, who are providers and consumers of services, to
dynamically join and leave the collective. The framework is designed as a collection of
hardware devices and software components [22] within which members share services.

A service is an entity that can be consumed or published by a device, software,
human user, or another service. The concept of ‘Service’ is central to Jini. A service
is shared among members of a Jini system. For example, a service may be a simple
computation program or a storage device. Generally, a consumer finds a service and

a provider through a protocol. The consumer sends a service request to the provider.
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Services may use other services to complete a given task. The Jini framework provides
an infrastructure for defining, registering, and consuming services.

A Jini system consists of the following parts [22]:

e A set of components that provides an infrastructure for federated services in a

distributed system.

e A programming model that supports and encourages the production of reliable

distributed services.

e Services that can be made part of a federated Jini system and which offer func-

tionality to any other member of the federation.
According to the Jini Architecture Specification [24], some of the goals are:
e Enabling users to share services and resources over a network.

e Providing users easy access to resources anywhere on the network while allowing

the network location of the user to change

e Simplifying the task of building, maintaining, and altering a network of devices,

software, and users.

At the heart of the Jini framework is a trio of protocols. They are Discovery, Join,
and Lookup. These protocols are the base of the Jini framework for developing scalable
distributed systems. As we briefly describe these protocols, it will be evident why a
distributed system built using the Jini framework is scalable. The following subsections

provide a brief description of each protocol.
3.1.1 Discovery Protocol

Discovery is the protocol to locate a ‘Lookup Service’ in the network [22]. Discovery of
a Lookup Service is the first step in a Jini framework to become a member as a service

provider or a consumer of a service. Therefore, it is a gateway to a distributed system.
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Once a Lookup Service is located, a member can register as a service provider in the
Lookup Service or scan the Lookup Service for available services and their providers.

There are three types of Discovery protocols. They are:

e Multicast request protocol: a service consumer performs multicasts to discover

nearby Lookup Services.

e Multicast announcement protocol: a Lookup Service multicasts its locations to

the world.

e Unicast protocol: a request-response protocol to discover Lookup Services. It

uses the unicast transport protocol provided by the network.

3.1.2 Join Protocol

Join is the protocol to register a service to one or more Lookup Services in the network.
A service provider uses the Discovery protocol to locate a Lookup Service. Then
through the Join protocol, the provider registers its service to the Lookup Service to
make the service available to all members. If this is a new service, then the Lookup

Service broadcasts the availability of the new service.

3.1.3 Lookup Service Protocol

Consumers find and resolve services using a Lookup Service protocol. A Lookup Service
provides a service to a consumer with an address of a service provider. The consumer
uses the address to request services from the service provider. In other words, a Lookup
Service links interfaces of service providers’ functionality to the providers’ implemen-
tation of the service.

A Lookup Service is a fundamental part of Jini infrastructure because it provides
a registry of services available within a Jini system. It maintains a directory of service
items that are instances of available services. When a service is registered with a
Lookup Service, the service object contains a Java API for the service such that a

consumer can invoke the API to request the service. A consumer queries the Lookup
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Service to find a desired service. The query may return the API of more than one
service provider. The consumer requests the service via the given API.
Here are examples of how a provider registers its service in a Lookup Service and

how a consumer consumes a service in a Jini system using the protocols above.

Service Provider

b) Request for

registration of a service
a) Find Lookup Service 9

Discovery Join

c) Register the service with Lookup Service

Lookup Service

Figure 3: Service Provider registering a service in a Lookup Service

A service provider uses the Discovery and Join protocols to register a service. The

registration process happens in the following steps shown in Figure 3:
e Find a Lookup Service using the Discovery protocol.
e Register a service or services using the Join protocol in the Lookup Service.

A service consumer uses the Discovery and Lookup Service protocols to find a
service and a service provider. The process of finding and requesting services happens

in the following steps:
e Find a Lookup Service using the Discover protocol.
e Find the desired service and service provider in the Lookup Service.
e Request the service from the service provider.
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Client 3) Request service Service Provider

:

2) Search service and
service provider

1)Discover Lookup Service

Lookup Service

Discovery

t

Figure 4: Client finding and requesting a service in the Jini environment

Figure 4 shows the above steps in finding a service in Lookup service, and then

requesting for the service from a provider.

3) Request

. Service Provider
service

Client

;

b) Request for

1) Discover Looku
) P registration of a service

Service

2) Search service and

service provider @) Find Lookup
Service

Discovery

c) Register the service with
Lookup Service

Lookup Service

Figure 5: Jini Discovery, Join, and Lookup process

Figure 5 shows the process of Discovery, Join, and Lookup in a Jini environment
by a consumer and a service provider.

For further reading, please refer to the Jini Architecture Specifications [23].

Jini is the foundation for JavaSpace. Therefore, a JavaSpace is developed to be a

Jini service, taking advantage of the Jini framework for distributed computing [9]. Jini
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provides a foundation upon which distributed computing systems can be developed
using the JavaSpace specification. As a Jini service, a JavaSpace provides a repository
for objects as a service to all members such that it provides a mechanism for sharing
Java objects. We describe JavaSpace in detail in Chapter 4.

In the Jini Technology Starter Kit 2.0, there are a few additions to the Jini architec-
ture!. The additions are mainly in application security and configuration. There are
also improvements in programming models for service providers and service consumers.
The new version adds support for pluggable invocation layer behavior and pluggable
transport providers known as Jini Extensible Remote Invocation.

The security enhancements allows mutual authentication between service providers
and service consumers, authorization, integrity checks (e.g. cryptographic checksums),
and encryption. This improvement provides a framework for trust verification and a
constraint-based remote invocation model. The constraint-based model allows appli-
cations to specify various security requirements on remote invocation. This provides
the service provider with a medium to effectively shield itself from unwanted operation
on its systems. This also allows the application to dynamically change the security
requirement.

This version of Jini also changed the fundamentals of the service startup method.
This version adds a Configuration programming model. This allows an application to
be configured at deployment time. The net.jini.config.Configuration API provides
a simple, uniform way to create configuration objects at deployment time. Jini provides
net.jini.config.ConfigurationFile as a default implementation of Configuration.
The configuration file is written in a subset of the syntax of the Java programming
language such that Java objects can parse the file with ease. Please refer to the
net.jini.config package documentation for an example and further information on the

configuration.

LFor further reading, please refer to the Jini Technology Starter Kit overview v2.0 that is included in the
Jini Technology Starter Kit download.
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Jini uses Remote Method Invocation (RMI) as a method of communication. The

following section describes the RMI specification and its relevance to the paper.

3.2 Remote Method Invocation (RMI)

RMI is the means to move objects across the network using Jini [25]. RMI is a remote
procedure call (RPC) mechanism in the J2EE framework. It is a communication vehicle
among distributed objects. Since RMI is part of the grand Java specification, it gives
a seamless communication method for writing a distributed application under Jini.
According to the RMI specification [26], general requirements for RMI to support

distributed objects in the Java language are:

e Support seamless remote invocation on objects in different virtual machines.
e Support callbacks from servers to applets.

e Integrate the distributed object model into the Java programming language in
a natural way while retaining most of the Java programming language’s object

semantics.

o Make differences between the distributed object model and local Java platform’s

object model tranparent.
e Make writing reliable distributed applications as simple as possible.
e Preserve the type-safety provided by the Java platform’s runtime environment.

e Support various reference semantics for remote objects; for example non persistent

references, persistent references, and lazy activation.

e Maintain the safe environment of the Java platform provided by security managers

and class loaders.

We described the Jini and RMI technology that is the base technology for the
JavaSpace technology. In the following chapter, we discuss the JavaSpace technology

and how the JavaSpace technology extends Jini and RMI technological frameworks.
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4 JavaSpace

In this chapter, we give a detailed overview of JavaSpace. We start by describing
JavaSpace and then cite relevant features of the JavaSpace specifications [27]. We show
the advantages of using Java technology to implement our P2P Distributed Computing
model in the subsection 4.2. We use the JavaSpace specification [27] and the book [7]

as the primary source for the literature.

4.1 Description of JavaSpace

A JavaSpace may be defined in several different ways depending on the viewpoints of
an inquirer. Some of the perspectives from which we can look at JavaSpace are: a
Jini Service, a mechanism for distributed communication, and a mechanism for object
storage. In the Jini/RMI chapter, we have discussed that a JavaSpace is a Jini service.
In this chapter, we present JavaSpace as a mechanism for distributed communication
and object storage.

A JavaSpace is a network-accessible “shared-memory,” which is a repository for
Java objects [7]. Therefore, a JavaSpace provides a mechanism for object storage and
distribution. Members can write to a JavaSpace as a persistent object storage, which in
turn can be shared among members or processors. This sharing of objects allows mem-
bers to use a JavaSpace as an indirect medium of communication. Hence, JavaSpace
technology provides a fundamentally different computing model by decoupling mem-
bers or processors from having to know each other as in client/server model. There
can be one or many JavaSpaces. Figure 6 gives a visual representation of multiple
JavaSpaces working with members or processors.

We present the JavaSpace technology and its key features in the following few
paragraphs to show how the JavaSpace technology works.

The JavaSpace technology is heavily influenced by the concept of a tuple space,

first described in 1982 in the Linda programming language [27]. Many active programs
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Figure 6: JavaSpaces [27]

can exist over physically dispersed processors, unaware of each other’s existence, and
yet still able to communicate with each other. They communicate by releasing data
(a tuple) into tuple space. Programs read, write, and take tuples (entries) from a
tuple space that are of interest to them. Similarly, JavaSpace is analogous to a tuple
space where processors can write, read, and take Java objects. Members or processors
communicate by exchanging objects through JavaSpaces rather than communicating
directly.

A JavaSpace comes in two flavors, transient and persistent [27]. The transient
nature of a JavaSpace is that when the JavaSpace goes away, objects in it also go away.
However, in a persistent JavaSpace, objects in the space continue to exist even after the
space is stopped and started. Hence, contents of a persistent JavaSpace are saved in
disk storage. Once an object is written to a JavaSpace, that object exists in the space
until a member explicitly removes it or the “lease” time for it expires, automatically
removing it from the space. Since objects written in a JavaSpace are persistent, their
life cycle is independent of their creators. Therefore, objects in JavaSpaces live even
after their creator no longer exists. This persistence feature of JavaSpace technology

removes dependency among members’ life cycles. Members can communicate through
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a JavaSpace using objects without having to know if a member is alive or not.

Members can write an object to a JavaSpace; but how can a member find the
object or any object in the space? A member can locate objects in a JavaSpace using
associative lookup, which is a way of finding objects by looking into the contents of an
object without having to know an object’s name and its creator.

JavaSpace technology provides a transaction model that guarantees an operation
on a JavaSpace is atomic [27]. The transaction model has ACID properties that are
‘Atomicity,” ‘Consistency,” ‘Isolation,” and ‘Durability.” For further reading, please
refer to the JavaSpaces specification [27] section ‘Transactions and ACID Properties.’
The transaction model supports operations over a single JavaSpace or over multiple
JavaSpaces.

One of the key features of JavaSpace technology is that it allows exchanging exe-
cutable content in an object [27]. Members cannot execute methods on an object in
a JavaSpace. However, when a member reads an object, it receives a local copy of an
object on which it can invoke any available method. This allows members to execute
objects that they have never encountered before. This is often known as ‘dynamic code
downloading.’

We discussed writing objects into a JavaSpace. However, we have not defined
objects that can be written to JavaSpaces. A standardization of objects is necessary
for all members to understand and operate on objects in JavaSpaces. The JavaSpace
technology uses Jini ‘Entry’ interfaces as a common interface for any object written
to a JavaSpace. An Entry interface is defined in the Jini Entry Specification [24] and
packaged in net.jini.core.entry.

A member can write an object to a JavaSpace if and only if the object implements
the Entry interface. By restricting all objects to use a common interface, JavaSpace
and Jini technologies standardize objects such that any member can easily process

information in an object without having prior knowledge of the object. Having the
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Entry interface implemented by all objects imposes the following rules:

e Subclasses of Entry must provide a public constructor without any arguments.
e All members of Entry must be defined as public.
e No primitive attributes are allowed in an Entry.

e When an Entry is serialized, each of its fields is serialized separately.

So far, we have discussed that a JavaSpace provides a medium through which
members can communicate using Entry objects without having to know each other’s
existence. These Entry objects may have commands to solve problems, the definition of
a problem, or method that perform some actions. The space does not execute methods
on the Entries. It is simply a container for the Entries. As long as the “shared-memory”
exists, the Entries in it also exist.

For example, a member can create an Entry that has a method to compute the
factorial of a given number. It can then write this factorial Entry into a JavaSpace.
Once the object is written into the space, it is available to members. Let us say a
member reads the Entry out of the space to its local machine. Now the member can
invoke the factorial method on the Entry to compute the factorial without having to
know any information about factorials. Here the member is using the service provided
by some other members. In this way, members can exchange tasks and request infor-
mation without having to know who has the relevant information. The details of how
the space works is discussed in Chapter 8, Implementation.

A JavaSpace provides a basis for the implementation of a cooperative, distributed
architecture. Members write and read Entries from the space. A matching criterion
is used to take Entries out of the space. Those Entries represent services, work in
progress, states, and other information or data shared among the networked resources.
Therefore, the JavaSpace technology is a very good candidate for developing distributed

applications.
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The following are a few JavaSpace specifications to illustrate why we are embracing
this technology to implement our P2P Distributed Computing model and the advan-
tages it provides.

JavaSpace specification JS.1.5 Goals and Requirements [27] states that the goals of

the design of the JavaSpace technology are:

e Provide a platform for designing distributed computing systems that simplifies

the design and implementation of those systems.

e The client side should have few classes, both to keep the client-side model simple

and to make downloading of the client classes quick.

e The client side should have a small footprint, because it will run on computers

with limited local memory.

e A variety of implementations should be possible, including relational database

storage and object-oriented database storage.

e It should be possible to create a replicated JavaSpaces service.

According to the JavaSpace specification, the requirements for JavaSpaces applica-

tion clients are:

e It must be possible to write a client purely in the Java programming language.

e (Clients must be oblivious to the implementation details of the services. The same
entries and templates must work in the same ways no matter which implementa-

tion is used.

JavaSpace specification JS.1.6 Dependencies [27] states the JavaSpace specification

relies upon the following other specifications:

e Java Remote Method Invocation Specification [26].

e Java Object Serialization Specification [24].
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Jini Entry Specification [24].

Jini Entry Utilities Specification [24].

Jini Distributed Event Specification [24].

Jini Distributed Leasing Specification [24].

Jini Transaction Specification [24].

JavaSpace specification JS.2 Operations [27] states that there are four primary

kinds of operations that can be invoked on a JavaSpace service. They are as follows:

e Write: write the given entry into a JavaSpace service.
e Read: read an entry from a JavaSpace service that matches the given template.

e Take: read an entry from a JavaSpace service that matches the given template,

removing it from this space.

e Notify: notify a specified object when entries that match the given template are

written into a JavaSpace service.

JavaSpace specification JS.3.2 [27] specifies Transactions and ACID (Atomicity,
Consistency, Isolation, Durability) Properties. The following are ACID properties de-

fined in JavaSpaces:

e Atomicity: all the operations grouped under a transaction occur or none of them

does.

e Consistency: the completion of a transaction must leave the system in a consis-
tent state. Consistency includes issues known only to humans, such as that an
employee should always have a manager. The enforcement of consistency is out-
side of the transaction - a transaction is a tool to allow consistency guarantees,

and not itself a guarantor of consistency.
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e Isolation: on-going transactions should not affect each other. Any observer should
be able to see other transactions executing in some sequential order (although

different observers may see different orders).

e Durability: the results of a transaction should be as persistent as the entity on

which the transaction cominits.

The JavaSpace technology provides a framework to implement the Octopus archi-
tecture. Since the JavaSpace, Jini, and RMI technologies are well defined and support
distributed computing architecture, we can leverage the existing framework to develop
the implementation of the Octopus. We are taking advantage of the freely available

technologies, which give us the ability to develop a prototype in a short period.

4.2 Benefit

The above description of JavaSpace and the synopsis of the specifications outline tech-
nological advantages in building a distributed system with the JavaSpace technology.
The benefit of using JavaSpace is that the specification is well defined that supports
loosely coupled protocols. This allows us to develop a system where there is no notion
of server or master, and all members are equal.

Sun Microsystems has already implemented the JavaSpace specification. Therefore,
instead of re-inventing the wheel, we use Sun’s existing implementation of Java, Jini,
and RMIL. On top of that, API’s are freely available through Sun. This provides a free
tool to implement our architecture.

Since we are using Java technology, we are depending on the Java motto of “write
once and run everywhere.” This gives a new meaning to our architecture, as it does not
depend on the type of hardware and CPU. It becomes a true distributed environment.
The only requirement is a client application that runs on each participating computer.

We laid out the JavaSpace and Jini specifications. Let us explain the components

of Octopus in detail in the following chapter.
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5 Octopus: An Architecture for Peer-to-Peer
Distributed Computing

As we have defined in section 1.2, distributed computing is about designing and build-
ing applications that are distributed across a network of computers to solve a single
problem. A Peer-to-Peer (P2P) network is one way the computers may communicate.
Taking these two concepts, we present in this chapter a P2P Distributed Comput-
ing environment named Octopus. The goal of Octopus is to solve a CPU intensive
problem by using unused processing time on networked desktop computers. We define
requirements for Octopus and its components in section 5.1. We explain the design
process in section 5.2. We develop the architecture of Octopus in subsection 5.2.1. We

discuss details of the implementation in Chapter 8.

5.1 Requirements

In this section, a set of high-level requirements for the Peer-to-Peer Distributed Com-
puting model (Octopus) is laid out, followed by detailed use cases that capture work-
flow.

We give a brief definition of a Distributed Communication Space (DCS). A Dis-
tributed Communication Space is an area where members have access to read and
write objects. The DCS is a means to communicate information among members in
the community. We discuss details of DCS in Chapter 8

The high level requirements for developing a Peer-to-Peer computing architecture

are:

e A tenet of developing the system is to exploit idle CPU time on networked com-

puters.

e Membership in the community is voluntary. Members volunteer in publishing

problems and acquiring solutions.
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e Members can join and leave the community at any time without having any

impact.

e Members publish a problem in a Distributed Communication Space (DCS) asking

members that acquire problems from that DCS to help solve a problem.

e Members or acquirers get a problem from a DCS. They find solutions to the

problem and publish their solutions to the DCS.
e Ability to transfer a large data set from a publisher to an acquirer of a problem.
e Ability to process problems that are CPU intensive.
e Ability to solve a large problem in a short time period.

e Ability to ask many members to solve a problem such that at least one solution

is received.

In the above requirements, there is no constraint on a problem. The system should
be able to handle any problem whether large or small as long as we can distribute
the problem. For our exercise, we are taking a FP to illustrate our design of the P2P
distributed system. In general, if a problem has a large data set, we divide the data
into small units. We define such a unit of data as a work unit. A problem has two
components: one data and the other model of the problem. A model is a set of well-
defined instructions for processing the data to produce a solution. We define a ticket
as a class containing both model and data of a problem or a solution to the problem.
A ticket may contain either a reference to a model and data or a payload of model and
data itself.

With the above requirements in mind, we describe two broad use cases as follows.
Use Case 1 describes actions of a publisher, while Use Case 2 describes actions of an

acquirer.
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5.1.1 Use Case 1: Publisher

Contezt: A Publisher is a member of a volunteer community that has a problem which
needs solutions. In this use case, we describe how a volunteer member can publish a
problem. The publisher has to follow these steps to publish the problem into a DCS.

We also describe how the publisher receives solutions to its problem.

1. The publisher has a well-defined problem with a model and a data set.

2. A ticket is generated containing either a reference to the file name of the model

and its data, or the model and data may be sent as a payload.
3. The ticket is published into a DCS.

4. If the ticket contains references to model and data, provide the model and data

set to acquirers of the problem
5. Periodically check whether a solution is available in the DCS.
6. Get solution tickets from the DCS.

7. If the ticket contains a reference to the solution, request the solution from the

acquirer. Otherwise, unpack solutions from the ticket. Save the solutions to disk.
8. Analyze and decide if the result is acceptable.

9. If the result is acceptable, remove the problem from the DCS. Otherwise, leave

it in the DCS for another acquirer.
5.1.2 Use Case 2: Acquirer

Context: An acquirer is a member of the volunteer community who is waiting for a
problem. In this use case, we describe how an acquirer gets a problem from the DCS,
and how it publishes the solutions to the DCS. The following are the steps an acquirer

takes to complete its tasks.

1. Periodically check the DCS for a ticket containing a problem.
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2. Take a ticket from the DCS.

(a)

data sets from the pub

If the ticket contains references to a model and data, request the model and

lisher.

Save the data and model sets on the local drive.
Start processing the work unit as a low priority process.

Once processing is complete, generate a solution ticket with the model and

solution data set or a reference to the model and solution data.

the solution, send it to

3. Purge the data, model, and

for use.

5.1.3 Flow Diagram

We present a flow diagram based on the above use cases. Figure 7 represents the flow

of information and the sequence

above use cases.
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We have laid out requirements for a system and provided use cases and a process
flow. We also require that system be scalable and fault tolerant. With these require-

ments, we design a system in the following section.

5.2 Design

In this section, we develop an architecture that meets the requirements outlined in the
section 5.1. Then, we fully develop a technical solution for the architecture. First, we
give a brief overview in this section. In the Architecture section 5.2.1, we develop a
model that provides a response to the requirements. In the Design section 5.2.2, we
lay out a detailed design specification that meets the requirements.

We develop an architecture using a Hybrid Peer-to-Peer networking and Distributed
Computing model. Taking the architecture as a guide, we design and implement the
Octopus system to demonstrate the validity of Hybrid Peer-to-Peer Distributed Com-
puting. We use FP problems to demonstrate an implementation of the architecture.
The implementation is described in Chapter 8.

We architect the Peer-to-Peer Distributed Computing system to be independent of
the problems to be solved. Octopus should work not only for a FP problem, but also for
any well-defined problem. ‘Well-defined problem’ means that a member who volunteers
to solve the problem has sufficient information to produce a solution or solutions. A

FP discussed in detail in section 6.1 is an example of a well-defined problem.

5.2.1 Architecture

In this section, we give details of the architecture of our P2P Distributed Computing
network environment. Our goal in this section is to use the concepts of P2P networking
and Distributed Computing to develop architecture for Octopus. Figure 8 shows the
high-level the architecture of Octopus.

In Figure 8, V; though Vg are member computers. They have the Distributed Com-

munication Client (DCC), a client program, installed locally. The members publish
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Figure 8: Octopus: High-level architecture

problems in the Distributed Communication Space (DCS), the JavaSpace, using the
client program, DCC. Similarly, members use the DCC to acquire solutions from the
DCS. In this environment, members do not know about each other. The only knowl-
edge they have is about the DCS. Members neither know who is asking for solution to
a problem nor know who is solving the problem. The DCC, a communication client, is
a P2P networking application, while the DCS is a JavaSpace in the Octopus system.

For example, a publisher has a well-defined problem, a FP. It wishes to publish the
FP to find a solution or solutions. The publisher instructs the DCC, a client program,
to build a ticket describing the model and the data for the FP. Then the DCC publishes
a ticket in the DCS. The publisher waits for a solution or solutions. It periodically
checks in DCS for any reported solutions. The received solutions are processed and
presented to the user. These are the characteristics of a publisher. Figure 9 describes
the functional architecture of a publisher.

Similarly, an acquirer, a member who wishes to work on a problem, acquires a FP
ticket from DCS. The acquirer invokes processing using unused CPU resources. Once
the processing is complete, the acquirer builds a ticket containing the completed work,
which is published in DCS for consumption by the publisher. The solution is provided

to the publisher. Then the resources are released by deleting the data, the model, and
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the solution files from the local disk. Figure 10 describes the functional architecture

of an acquirer.
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Figure 10: Architecture of DCC acquirer

Based on the requirements and functions of publishers and acquirers, the functional

requirements for designing the Distributed Client Communication (DCC) are:
1. Find DCS.

2. Create and decipher tickets.
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3. Read and write problem tickets from and to DCS.
4. Read and write solution tickets from and to DCS.
5. Respond to requests for the model and data.

6. Respond to requests for the solution.

The architecture of DCC should support publication of problem and solution tickets in
DCS as well as acquiring of problem and solution tickets from DCS. We describe the
details of the design of DCC in subsection 5.2.2.

We now discuss the architecture of a DCS. So far, we have said that a DCS is a
JavaSpace. The requirement for a DCS is that it should be accessible by members in
a networked environment such as the Internet or a private network. The architecture
of the DCS needs to support members joining and leaving the community without any
impact on the system. If a member decides to join in either publishing or acquiring
a problem to solve, the member needs to install DCC and then find a DCS. The
architecture also needs to support members leaving the network at their convenience.
This means if a member wants to leave the community, all it has to do is to cease to
communicate with the DCS.

The architectural question is how can we design DCS to handle the requirements
of publishing and acquiring of problems and results and of allowing members to join
and leave the community at their leisure. Figure 11 shows the architecture of DCS.

As shown in Figure 11, a DCS has two channels, one for problems and the other for
solutions. The channel for problems is called the Work unit Publication Channel
(WPC), while the channel for solutions is called the Solution Publication Channel
(SPC).

A publisher and an acquirer use WPC and SPC to communicate problems and
results. A publisher publishes problem tickets on WPC. An acquirer looks for a problem
ticket in WPC. Once the acquirer completes processing of a problem, it publishes

solution tickets on SPC. The publisher searches for solution tickets in SPC. We describe
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Figure 11: DCS architecture

the detailed design of these channels in the Design section 5.2.2.
We have presented the architecture of Octopus at a high level in this section. In

the following section, we discuss our architecture in detail.
5.2.2 Design

In this section, first we describe how a DCS and its channels are designed. Then, we
describe the design of DCC.

A DCS has two channels, WPC and SPC, as shown in Figure 11. The channels are
designed as queues. The design of each queue is such that members using DCC are
able to do such operations as en-queue, read, and de-queue. The design of a SPC is
simpler than the design of WPC. We present the design of SPC followed by the design
of WPC.

We design a SPC as a simple queue-like structure. The queue-like structure is a
placeholder for solution tickets. The ticket may contain a digital signature to allow
only the publisher to remove the ticket from the queue. Publishers are allowed to
search through the queue to de-queue tickets that they own.

A WPC needs to support more than one acquirer access the same problem ticket.
Only publishers are allowed remove their own problem ticket from the queue. We

support those requirements by designing the WPC as a Circular First In First Out
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(CFIFO) queue. A CFIFO queue is a FIFO queue with a caveat that when a ticket
is removed from the queue, a copy is re-queued. For example, the WPC has a, b, and
¢ elements in order. When an acquirer removes the first element a from the WPC for
processing, the element a is re-queued immediately. Now, the WPC has elements b, c,

and a in order. Figure 12 gives a visual representation of a CFIFO queue.

A consumer
takes "a" out of
the queue

o

N

Figure 12: CFIFO (Circular First In First Out) queue

By design, a CFIFO queue allows more than one acquirer to work on the same
problem. Therefore, if there is only one ticket on the queue, then all acquirers receive
the same ticket. More tickets on the queue mean that acquirers will receive different
tickets. Since tickets are re-queued, one ticket may be picked up by more than one
acquirer. This is the strength of the design of the WPC. We are allowing more than
one member to work on a problem by design. This gives publishers the opportunity to
ask many acquirers to work on same problem until a solution is obtained.

The architecture of the CFIFO queue gives rise to a possibility that a problem may
potentially live in the queue indefinitely. Therefore, it is the responsibility of a publisher
of a problem to remove the problem from the WPC. In fact, only the publisher of the
problem is allowed to remove the problem from the queue. To allow only publishers to

remove the ticket from the queue, tickets may contain a digital signature. This does
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not entirely solve the problem of a ticket living in the WPC indefinitely because a
publisher can disappear. Therefore, we solve the problem of a ticket being in the WPC
indefinitely by having an expiration time on tickets. This way, either a publisher takes
the ticket out or the ticket expires.

We presented the design of the DCS. Now, we discuss the design of the DCC.

Distributed Communication Client (DCC) is a client application. We design
DCC as an application that allows finding a DCS and communicating tickets to and
from it. The design of DCC is such that a member can be either a ‘Publisher’ or an

‘Acquirer.” Figure 14 describes the design of DCC.

User Interface Layer

Processing
Layer
Acquirer Publisher
Layer Layer

Communication Layer to DCS

Figure 13: Architectural design of DCC

We design DCC to have four layers. The communication layer to DCS is the base
layer for the publisher and acquirer layers. It provides the utilities and APIs to find,
connect, and make requests to DCS.

The user interface is a top layer, which allows users to interact with the DCC. Users
issue a publish and an acquire command through this layer. The publisher layer im-
plements requirements to be a publisher. The acquirer layer implements requirements
to be an acquirer. It has a processing sub-layer that allows it to interface with external
systems to process problems.

All the layers are implemented using Java. We describe the details of their imple-

mentation in Chapter 8.
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Figure 14 describes the design of Octopus. It captures the interaction between the

\

DCC and DCS layers.
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Figure 14: Architectural design of Octopus

5.3 Technical Issues

Though the distributed application has many appealing characteristics, there are many
challenges that the system faces compared to local computing. The major issues in
distributed computing are latency, memory access, partial failure, concurrency, and
synchronization [28].

The Octopus architecture is for a time-consuming problem. It is best for those
problems that require complex computation on a large data set although by design any
type of problems can be solved. The time lag in communicating between two computers
in a network is called latency. Latency in Octopus is the time lag in communicating
between DCC and DCS. Our choice of the problem is such that the ratio between the
latency and computing time is very low. That is, the transfer of data may take 20
seconds, but the computing time may take 20 hours. Even though it takes a long time
to get the data, the latency is not an issue in the architecture for problems with this
very low ratio of latency to computing time. Besides, we are interested in solving a
large problem in a reasonable time. Therefore, our design takes latency into account.

The architecture of Octopus does not require an acquirer of a problem to respond
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with a solution. Once an acquirer gets a ticket, it is totally up to the acquirer to decide
if it wants to process the work unit. There are numerous reasons why the acquirer
may not reply with a solution. For example, a system failure or a hardware failure
may cause the volunteer to abandon processing, or a network failure may prevent
the volunteer from communicating to DCS. This is defined as partial failure. In
this environment, partial failure has minimal consequences because there is a high
probability that another volunteer will respond.

The architecture supports partial failure. Partial failure occurs when a peer does
not send a solution to DCS. Members are communicating problems and solutions with
DCS independent of each other’s behavior. DCS is designed such that one or many
members can work on the same problem. Furthermore, the architecture is decoupled
in the sense that none of the members is required to answer back with results. In many
cases, a publisher receives more than one response. Therefore, publishers are required
to handle reports of multiple solutions. We view this as strength of the architecture.

The architecture handles concurrency through JavaSpace’s implementation of
transaction processing. Concurrency arises when multiple peers try to access the same
resource. JavaSpace supports transactional processing, therefore allowing concurrent
processing. For further reading on concurrency, please refer to [7].

The architecture is scalable as it allows members to join and leave the community
with ease. If the problem is large, then we request volunteers to join in solving the
problem. Similarly, if there are many unused resources, then the members will solve
the same problems. The architecture addresses the scalability issue by design.

The system is fault tolerant with high availability because of the redundant nature
of the architecture. If a member goes down or does not report solutions, the work will
be picked by another member waiting to get a work unit. If a publisher goes down for
a period, the tickets are still in the DCS. Therefore, when the publisher comes back,

it will be able to process the solution tickets. Here we are assuming that the publisher
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comes back before tickets expire.
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6 Problem Definition

We laid out the architecture and environment for P2P Distributed Computing in the
preceding chapters. In this Chapter, we lay a foundation for financial theories and
Artificial Neural Networks (ANN). We explain market theories and instrument valua-
tions. Here the term ‘instrument’ means financial securities traded in an open market.
We call the financial problem we use here FP, ‘Financial Problem.’

The FP problems we use are finding stock quotes and a Monte Carlo simulation of
value of a simple equity portfolio consisting of four equity instruments.

We develop a portfolio and valuation theory of a security in section 6.1.
6.1 Financial Theory

In this section, we give an introduction to finance as a foundation for understanding
the FP problems. We explain relevant theories that provide a basic understanding of
financial market principles and the valuation of financial instruments. In this section,
we use mathematical notations that are primarily used by economists. This description
follows that of Brealey and Myers [4].

A portfolio consists of one or more financial instruments. Each instrument in the
portfolio is called a holding of that instrument. The market value of a portfolio V' at

time ¢ is the weighted sum of holdings at price P,

N
V;ﬁ = Z 'wntPnta
n=1

where w,,; is the weight in the portfolio of the instrument n at time . We can think of
wy as number of shares of instrument n at time t being held in the portfolio V. For
example, suppose YAHOO is the 10" instrument in the portfolio V.. Thus, N is the
total number of instruments held in the portfolio V. P, is the price of the instrument
n at time ¢. In this example, P,,; = $1.50., and n = 10, which indicates YAHOO stock.
The weight of YAHOO stock is wip = 5000 on day ¢ = 01/02/2003. The weight wy,

changes as we trade, while the price of instrument P, changes due to the market.
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For example, suppose we have a portfolio A that consists of three instruments.
They are Sun Microsystems with a weight of 500 shares, Oracle with a weight of 700
shares, and Cisco with a weight of 300 shares. On Jan 3, 2003, at time ¢, Sun’s closing
price is $3.55, Oracle closed at $11.56, and Cisco closed at $13.91. The market value

of A for t = Jan 3, 2003 is given by

where, n =1,2,3, N = 3, and t = Jan 3, 2003.

A difference in market value of a portfolio at time ¢ compared to time ¢t — 1 = Jan
2, 2003, is the amount of money the portfolio made, which can be either positive or
negative. For example, on Jan 2, 2003 the closing prices are Sun $3.38, Oracle $11.21,
and Cisco $13.64. The market value of the portfolio on Jan 2, 2003 for the same weights
is $13,629.00. Therefore the difference in market value of the portfolio A between Jan
2 and Jan 3 of 2003 is +$411.00. This means the portfolio A has gained $411.00 on
Jan 3, 2003 due to changes in price.

The expected rate of return for a portfolio of instruments is the weighted average

of the expected rates of return for the individual instruments in the portfolio,
N
E(Rp) = Z wnE(Ry),
n=1
where R, is the return on the portfolio; R, is return on instrument » in the portfolio, w,,
is the weight of instrument 7 in the portfolio, and N is the total number of instruments
in the portfolio.
The risk of a portfolio is the measure of possible fluctuation of the portfolio value.
The rate of return usually fluctuates because the change in a price of an instrument
causes the rate of return to change. In mathematical terms, the risk is the standard

deviation of the market value of a portfolio. The standard deviation is computed as

the sum of weighted variance and covariance of each instrument in the portfolio,

n n

n
_ 2,2 0 Covs
ap —J E wya; + E E w;w; Covj,
i=1

i=1j=1
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where a,, is the standard deviation (the risk) of the portfolio, a; is the standard deviation
of Ith instrument, w; is the weight of the ith instrument in the portfolio, and Cov;;
is the covariance between the rates of return for instruments ¢ and j, that is Cov;; =
Tij0;0;.

We have laid out a basic foundation of the financial theory. We move on to the
pricing of instruments. To understand the pricing mechanism, we need to know how a
financial market operates and its assumptions.

A price of a good is determined by the supply and demand for the good [4]. This
basic economic theory applies to financial instruments as well. Investors are willing to
invest in a financial instrument that they believe will make money, that is, attain a
higher price. An investor’s willingness to pay for a unit share of a company’s stock is
its share price. A share price is determined by how much money a company is likely to
make in the future and the supply and demand of the instrument in the open market.
Therefore, a price is a measure of the stream of cash flow at today’s value, discounted
by the opportunity cost of the capital. The opportunity cost of capital is the rate of
return that one could make by investing the money in another instrument. For example,
suppose Shirish has $1,000.00. He has a few alternative investments for the money. He
can go fly-fishing and spend it. Alternatively, he can buy Sun Microsystems’s shares,
hoping the company will make money in the future and thus expecting the share price
will go up. Or finally, he can just put the money in a savings bond. If Shirish decided to
buy Sun Microsystem’s shares for $1000.00, then the alternative investments, buying
the savings bond or going fly-fishing represent the opportunity cost of $1,000.00 of
capital. We know the interest rate on the savings bond. This rate is often called the
opportunity cost of capital. Hence, if we know how much Sun Microsystem can make
in the future, we can use this interest rate to discount Sun Microsystems’ future cash
flow to obtain the present value of that future income today.

In determining the price, a financial market is assumed efficient. An efficient capital
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market is one in which security prices adjust rapidly to the release of new information.
Therefore, the current prices of securities reflect all publicly available information about
the security [4].

The efficient market assumes that (refer [4] for details)

e A large number of competing, profit-maximizing participants analyze and value

securities independent of each other.

e New information regarding securities comes to the market in a random fashion,

and the timing of one announcement is generally independent of others.

o Competing investors attempt to adjust security prices rapidly to reflect the effect

of new information.

“Investors do not buy a stock for its unique qualities; they buy it because it because
it offers the prospect of a fair return for its risk” [4]. This means that all the financial
instruments are perfect substitutes. Hence, the demand for a stock is highly elastic.
For a perfect substitute, a consumer is indifferent in consuming either one of the prod-
ucts. The elasticity of demand is a measure of the percentage change in the quantity
demanded for any stock when the price increases by a one percent. For example, if
the IBM stock price increases but the Microsoft price is comparatively lower and the
prospective return relative to risk is same, investor will switch from holding IBM to
holding Microsoft.

When the market is efficient, there can be no “arbitrage” opportunity. In its sim-
plest form, arbitrage means taking simultaneous positions in different assets to guaran-
tee a riskless profit higher than the riskless return given by U.S. Treasury bills. If such
profit potential exists, we say that there is an arbitrage opportunity. In efficient fi-
nancial markets, current prices fully reflect all available information and are consistent
with the risk involved. This means that no investor has more information than oth-

ers. When new information is released for an instrument, the price of that instrument
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reflects the new information immediately so that there is no arbitrage opportunity.
There are two kinds of arbitrage opportunities.

The first kind of arbitrage opportunity is to make investments such that there is no
current net commitment but there is the expectation of a positive profit. For example,
we can short-sell a stock and use the income to buy call options written on the same
security. Here, the investor has a long position in call options and a short position
in the underlying security. Such investment should not yield any excess profit after
commission and fees are deducted. However, if the investment does yield a positive
profit, we say that there is an arbitrage opportunity of the first kind.

The second kind of arbitrage opportunity is to make an investment with a negative
net commitment at present, but non-negative future profits. We can give a similar
example as above to illustrate the opportunity.

We say that the price of a security is at a ‘fair’ level, or that the security is correctly
priced, if there are no arbitrage opportunities of the first or second kinds at those prices.

With the above information on how prices are set in the market, we can define the

following model for the price of a security,
P, = f(Xﬂt)7

where P, is the price of security n, X,; is an information set relating to security n at
time ¢t. A set of information may consist of economic indicators, such as interest rate,
inflation, or unemployment in the sector. “Sector” is an economic term for section of
the economy and the market where products and services are alike. The information
set may also contain company specific information such as market share, earnings per
share, total assets, market capitalization, price per earnings, bid-ask spread, etc. The
information set varies depending upon the sector and industry to which the company
belongs. For example, the set of information used to predict the price of IBM is
different from the set of information used to predict the price of Starbucks. This is

because IBM is a technology company whose products and services are totally different
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from Starbucks, which is in the restaurant business.

In the following section, we discuss Monte Carlo simulation of a portfolio.

6.2 Monte Carlo Simulation

We use a Monte Carlo approach to do a portfolio value simulation. We take following

approach for Monte Carlo simulation.

1. As we have described above, we create a financial portfolio, TECH, with a number

of instruments, for example, YAHOO, SUN, BEA, and IBM.

2. We give a weight for each instrument in the portfolio. For our example, we choose
the following weights for each instrument. They are 500 common stock shares of
YAHOO, 300 common stock shares of SUN, 200 common stock shares for BEA,

and 400 common stock shares of IBM in our portfolio.

3. We use the portfolio valuation equation 6.1 to evaluate our portfolio at a given
price. In our case, we use mean price over the period 3/30/2001 and 3/19/2004

daily prices. For example,

VrEcH = 500 X Py + 300 x Ps + 200 x Pg + 400 x Py,
where Vg is the value of the portfolio TECH, Py is YAHOO’s price, Pg is
SUN’s price, Pg is BEA’s price, and Py is IBM’s price.

4. We simulate our portfolio, TECH, value with instrument prices computed as

follows:

P = up + (1.96 x op x Random(0..1))

where P is a price of an instrument, yp is mean of the price over the time period
3/30/2001 to 3/19/2004, 1.96 gives the 95% confidence interval in statistical
terms, op is the standard deviation of the prices over the time period 3/30/2001

and 3/19/2004, and a random number is generated between 0 and 1. This gives
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a price of an instrument within 95% confidence internal. Each random number
gives a new possible price, and thus a new portfolio value. With each new price for
all instruments, we evaluate the value of portfolio. This allows us to simulate the
value of portfolio with the induced changes in prices of instruments. Therefore,

the model with price shock can be expressed as follows:

VrEcH = 500(uyp + 1.96 X 0y x Random(0..1))
+ 300(psp + 1.96 x o5 x Random(0..1))
+ 200(ppp + 1.96 x opp X Random(0..1))

+400(uip + 1.96 X 0ip x Random(0..1)),

where Vr oy is the value of the portfolio TECH, o is the mean price, and o is the
standard deviation of an instrument over a period of time, p,, is YAHOO’s mean
price, psp is SUN’s mean price, p1pp is BEA’s mean price, p;, is IBM’s mean price,
and 1.96 represents a 95% confidence interval on the price of the instrument. oy,
is standard deviation of the YAHOO price, o), is standard deviation of the SUN
price, o;p is standard deviation of the IBM price, and oy, is standard deviation

of the BEA price.

. The following are the means and standards deviation of instrument prices.
YAHOO mean price, py, = 22.8572 and standard deviation, oy, = 11.0897.
SUN mean price, ps, = 38.5232 and standard deviation, o, = 6.7704.
BEA mean price, pu, = 17.0842 and standard deviation, oy, = 3.3128.

IBM, mean price, p;p = 91.7290 and standard deviation, o;, = 14.8172.

. We presented the simulated value of the portfolio with mean, median, and stan-

dard deviation statistics of the portfolio value in appendix A.

28



6.3 Stock Quote

In this section, we describe the problem finding a stock quote. A stock quote consist
of information on a specified stock such as bid and ask price, high and low volume
traded, the time of the quote and so on. We request a stock quote from the YAHOO
Financial site. YAHOO provides a method to query their financial data. We provide
YAHOO with valid ticker symbol, and the YAHOO provides real-time stock data in a
predefined format. We parsed and present the data for use.

When the publisher chooses a stock quote, it chooses a ticker symbol that is included
in the work unit. An acquirer requests stock quote data from YAHOO. The data from
YAHOO is parsed to create a solution ticket.

We chose two distinct problems for our demonstration. With these problems, we
demonstrate that the Octopus architecture is independent of problem types. A Monte
Carlo simulation is a suitable type of problem for the Octopus. Problems that require
intensive CPU power to solve are the best candidates for the Octopus. With stock
quote problem, we demonstrate that the Octopus is also architected in solving a simple
request such as finding a stock quote from a service provider in the network.

In the following chapters, we discuss risk-benefit of adopting the Octopus system
and walk through the process of implementing the Octopus architecture and the prob-

lem that we have presented in this chapter.
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7 Benefit and Risk of Using Octopus-Style Dis-
tributed Computing

There are benefits and inherent risks of using any networked computer system. In this
Chapter, we explore the benefits of the Octopus architecture and discuss risks that the
system possesses. We provide strategies to minimize each risk we present.

During system testing we present quantitative measurements (where possible) to
gather empirical test results. Our approach to quantitative measurements follows stan-
dard benchmarking techniques. Specifically, we follow methodologies described by
Hennessy and Patterson in [10] in conjunction with techniques defined by Standard
Performance Evaluation Corporation (http://www.spec.org.)

In this Chapter, we develop a scalability metric. We present the findings and
compare the outcome with our predictions in appendix B.

The following section describes benefits in using Octopus.

7.1 Benefits

In this section, we describe the benefits of using the Octopus architecture, which include
1. Solve a large-scale problem
2. Capitalize unutilized resources
3. Be independent of problem type
4. Be Scalable
5. Be fault tolerant and available
In the following subsections, we describe each of the benefits listed above.

7.1.1 Solve a Large-Scale Problem

The Octopus architecture makes it possible to solve large-scale problems that may not
be solvable with a single very fast computer. A large-scale problem consumes a lot of

computing resources.
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A problem may qualify for a large-scale because it has a very large data set. Pro-
cessing that data set may require enormous computing resources. For example, finding
an extra-terrestrial signal in data recorded from telescopes, the SETIQHOME project
requires processing a large data collected from radio telescopes located worldwide. The
Octopus system allows us to distribute large-scale problems to a number of volunteer
computers. It is possible to sub-divide the given problem such that we can work on
a smaller problem and its solution. Smaller problems, and their solutions, can be
processed to find a solution or solutions to the larger problem. Therefore, the P2P
distributed computing concept with the computationally divisible problem allows us

to solve a large-scale problem.
7.1.2 Capitalize Unutilized Resources

In this section, we discuss capitalizing unused computer resources by using the Octopus
systein.

We can obtain more from our capital investment than is current practice by using a
distributed system - Octopus. Specifically, we propose to use idle computing resources
to distribute and solve large-scale problems. Examples of idle resources are predom-
inantly CPU, memory, and disk space. The architecture of Octopus is designed to
use these resources to support solving problems. The following example illustrates our
assertion as it pertains to Octopus.

Let us propose a hypothetical company called Foo Financial Inc. whose operating

assumptions include

The company has 1000 employees.

The company’s hours of operations are 8 am to 6 pm, Monday through Friday.

o Average working hours per employee per day is 10.

Each employee has a computer. For simplification, we assume all computers are

equivalent to a DELL Optiplex GX270 in CPU, hard disk, and memory types,
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though computers participating in Octopus can be of any type and operating

system. This assumption is merely to get a rough estimate of benefit.
e Computers are left powered on all the time.

e The company has a well organized Information Technology group which has a
computer support team that supports computer operations including software

and hardware maintenance.
e Computer maintenance hours are 3 am to 5 am, Monday through Sunday.

Foo has 1000 computers, which are mostly busy during the hours of operation 8
am to 6 pm, and idle for the remainder of the day and on the weekends. Users use
computers for 10 hours, and the Information Technology (IT) group performs 2 hours
of maintenance giving at least 12 unused hours a day. Therefore, each computer is
used as much as 60 hours a week and idle for at least 84 hours a week.

During 2 hours for the system maintenance window, the technical support group
pushes virus updates, new software, and any necessary software updates. The tech-
nical support team is able to maintain or upgrade system software efficiently because
all the computers are network accessible. The overhead for the installation and main-
tenance of the Octopus software does not significantly increase the operating cost for
Foo Financial, since the acquisition cost and updates are of small size and complexity.

In this scenario, there may be small initial cost in adding the Octopus software, but
the 84 hours of idle computer resources are a real gain on the investment if we can use
them. Therefore, we can get more return from our investment by using the available
resources through Octopus compare to the current usage. Alternative methods to
solve these problems such as buying more hardware and necessary software impact
Foo’s operating costs. For example, getting a Unix server and buying or building new

software to solve the specific problem is potentially expensive.
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7.1.3 Be Independent of Problem Type

Since Octopus is a framework for building P2P distributed computing applications, its
architecture is not coupled to a particular type of problem set. Any large problem (or
small problem for that matter) that can be divided into smaller work units can be solved
using the Octopus architecture. For example, the FP problem is prototypical of one
type of problem that business might need to solve. However, the Octopus architecture
is not tied to the FP problem. For example, we can generate a Monte-Carlo simulation
of a different problem, find an extra-terrestrial signal from huge quantities of data
gathered by telescopes around world, or find a DNA sequence from data gathered by
DNA sequencing machines.

Our experimental test scenario is to have two publishers to publish two different
kinds of problems. Our prediction is that Octopus shall have no problem in distributing

the problems and returning solution(s).
7.1.4 Be Scalable

In a distributed environment, available resources can be added at will - the notion of
scale. In fact, we are seeking volunteer systems to help solve the problem. Hence,
we can tackle harder, resource intensive problems with minimal concern for resource
constraints as long as we have an ample supply of volunteers. If the problem is too
large for the team of computers, we simply add more computers from the volunteer
pool without having to redesign, rebuild and redistribute our application. In general, if
there are many problems to solve, we scale more peers to the network to solve problems.
Similarly, if there are fewer problems, all the idle peers solve the same problem, in which
case we can take peers out of the volunteer pool scaling down the system.

Octopus is designed to scale with increasing problem load by dynamically augment-
ing hardware resources. The contrary is true in the case of scaling down. Here our

position is that if there more problems presented, we add volunteers to process the
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problem. When we add a time dimension to our claim, it raises the questions, does the
Octopus architecture scale linearly, and how does the overall system power grow with
the number of processors? Due to overhead in processing and the mixture of hardware,
the scale probably will not be #(n). We do not have control over what hardware to
add since these resources can be considered simply a set of members from the volun-
teer pool. Therefore, the new volunteer can be fast or slow, and no effort is made
to prioritize volunteer selection based upon speed. That is, computer system speed
is multidimensional and must consider ram type, disk type, CPU, and configuration
and deployment settings. Naturally, the type of hardware is related to how fast it
can process a problem. Similarly, there are processing overheads that make it hard to
achieve truly linear scalability.

We want to measure scalability as a graph of the number of volunteers versus prob-
lem size (with time being the third variable). For our test, we first increase the number
of volunteers to solve a set of problems then observe the time to solve the problem.
For our second test, we increase number of problems with a given set of volunteers
to observe how long it takes to solve the problem. The three dimensional graph gives
us an indication of the scalability of Octopus for a given volunteer set. It is entirely
reasonable to get different results with a different mix of hardware. As Hennessy and
Patterson [10] point out, to get the same result in a performance measurement, we
would have to maintain the same conditions. Even slightly tuning of a piece of soft-

ware can change the performance test results by a large margin.
7.1.5 Be Fault Tolerance and Availability

“Non-distributed systems typically have little tolerance for failure; if a stand-alone
application fails, it terminates and remains unavailable until it is restarted” [7]. A
stand-alone application may be less graceful in handling failures, as the hardware is
a single point of failure. However, a distributed environment is not dependent on a

single hardware or software system. It can handle the failure gracefully by removing the

64



hardware as a single point of failure. If one computer fails, many computers can take
on the task. Hence, the fault tolerance and availability is built into the environment
by design rather than by product. We discussed in section 5.3 on how our design
incorporates fault tolerance.

Distributed computing is a natural system for working on our large-scale problem.
A distributed environment is not only simple but also elegant in design - a set of
processors work independently to solve problems.

In Octopus, we host multiple DCS’s (Distributed Communication Space) in many
different hosts to make Octopus available for use at any time.

Our claim is that fault tolerance and high availability are built into the environ-
ment by architecture or design. We substantiate this claim by quantitative measures.
Our test scenario is to crash or remove publishers and acquirers in a systematic and
repeatable way. We bring the publisher back online to observe if the publisher can still
function as per the specification. Our second test scenario is to observe if there is any
impact on providing solutions to problems when acquirers abruptly disappear. Our
prediction is that when a publisher comes back online, it should be able to perform
normally - i.e. obtaining results from DCS and processing them without incident. We
shall observe no impact due to the disappearance of the acquirer, as other volunteers

will pick up the problem that the acquirer needs to process.

7.2 Risk

Risk is uncertainty, which is inherent part of natural systems. Risks cannot be totally
erased, but only mitigated. Since risk is part of nature, and return is inversely related
to risk, there is benefit from taking a calculated risk. Risks are part of the Octopus
architecture, which can be minimized without incurring major cost. We target the
Octopus architecture to be used inside a protected corporate environment where many

security issues are managed by the system. However, this does not mean that Octopus
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is immune from risks. If Octopus is used in open network, the Octopus environment
needs to be tightened to give security to peer computers.

There are risks in using distributed computing, especially P2P distributed com-
puting, because the computers are sharing their available system resources. The very
notion of P2P distributed computing is to solve a single problem by utilizing unused
resources that are in networked environment. To resolve this contradiction, most im-
plementers of P2P networking allow only certain resources of the computer to be visible
to peer computers. For example, the SETIQHOME server provides all the software to
process a problem. In other words, the SETIQHOME client is a customized application
developed specifically for processing SETIQHOME problems.

Since Octopus is an open framework for solving problems, it is exposed to possible
risks from hackers or rogue applications. Therefore, it is very important that we address

these different types of risks. The following are broad categories of risks:
1. Software risks
2. Hardware risks
3. Network risks

4. Security risks

We discuss each in turn in the following sections.

7.2.1 Software Risks

We categorize the risk incurred due to software errors, software loopholes that allow any
component to execute a program, and problem complexity in this subsection. We talk
about risk due to use of the network in section 7.2.3. We describe each risk component
of software risks as follows.

Software errors cause an application to have an unintended outcome. A common
software error is that when an application gets to that instruction, in a worst-case

scenario, it may even crash the application. For example, in our portfolio problem,
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we compute market value from the number of holdings of an instrument multiplied by
the price of that instrument. Here, if we have divided instead of multiplied, we get
catastrophically different results. This causes an evaluation error. This is a simple
application error that has an unintended outcome. An example of an application crash
is that often in Java programs, when an instruction is expecting a value of a variable;
but the variable is null, then the Java application crashes with a null pointer exception.

Software loopholes are defined as allowing an external component to execute a
program. Part of the Octopus environment or framework allows executing any software
in support of seeking a problem solution. A publisher can define a problem that invokes
internal programs of a system to damage the peer computer environment. This is not
a grave problem if the program is a pure Java program. If we allow only a pure
Java program to be executed, then the Java ClassLoader can be used to minimize the
risk. We discuss how the Java ClassLoader can increase security in the Security Risk
section 7.2.4.

Problem complexities also bring about risk in solving a problem. A solution with
one component is less complex problem than a solution with n components. As prob-
lem complexity rises, the probability of getting the problem solved decreases. This is
because a complex problem requires more resources and possibly a longer time to solve.
Thus, a volunteer who acquires a complex problem may not be equipped computation-
ally to handle it. This is a risk in Octopus software.

We discussed software risk. In the following section, we discuss hardware risk.

7.2.2 Hardware Risk

We categorize the risk incurred due to hardware malfunction in this subsection. A
hardware malfunction can be caused by a device failure or by overuse of a device.
Device drivers are software components that are often the culprit when they are unable
to respond quickly enough and can eventually take the underlying hardware offline.

We can list many events where hardware fails. A hard drive malfunction crashes a
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computer. This is a hardware risk because any device in a computer can fail either due
to external events such as electrical surge, or due to faulty manufacturing. If hardware
is damaged by an electrical surge, then it is not available to solve problems.

Software can cause hardware malfunction by overusing the resources. For example,
software might use memory to such an extent that it cause a system to crash. This
is a daily occurrence in some cases. This is often called a memory leak in software.
Similarly, a computer crashes if a hard drive is over-allocated and unable to write more
data.

The hardware risks are inherent in P2P distributed computing. The very notion of
P2P distributed computing involves sharing hardware resources. When resources are
shared among peers, there is always a possibility that a peer’s resources may be over-
extended. To remove this risk of excessive consumption, DCC allows users to configure
to allocate certain amounts hard disk space. Therefore, a peer maintains allocation
information about resources for use by Octopus. In other words, the peer computer is
in full control of its resources. This means that if the peer computer is not interested
in sharing its resources, it can discontinue its participation or reduce its offerings to
Octopus at any time.

Octopus uses CPU resource only when the peer is idle. This is done through the
use of an application such as a screen saver. Thus, the user maintains full control of its
CPU usage. In the Octopus architecture, peer computers themselves can easily control
the hardware risks borne by software. This risk does not tend to be a critical factor to
the system.

Since users are in full control of their hardware, they can limit network access to
prevent overuse of the network. They can configure the network access intervals, and
also limit access to the network during certain times of the day. The network is an
important resource as Octopus system depends upon it heavily. Therefore, we give it

a separate subsection 7.2.3 in which we discuss in detail the use and overuse of the
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network.
7.2.3 Network Risk

We discuss the risk due to network use in this subsection. The network risks are
due to the use of the network capacity by a peer or group of peers in the network.
P2P distributed computing depends on using the bandwidth of a network when either
communicating with peers or exchanging data between peers. However, the only time
the network bandwidth is used is when getting the problem and data, and return of
solution. Other requests, for example, checking for problems does not require much
use of network bandwidth. There is an issue with network over-utilization. We dis-
cuss network usage and possible solution against over use of bandwidth in following
paragraphs.

One way to reduce the risk of network overuse is to put a limit on the size of data
transmissions. At the same time, we can throttle the network use to ease congestion.
Current network infrastructure can support downloading 10 to 15 Mega Bytes in under
30 minutes of time. We can put a limit at 10 Mega Bytes data and reduce the problem
size. If a publisher is requesting the solution of a problem containing a data set larger
than the limit, then we allow acquirers to access data from a location specified by the
publisher. This strategy reduces the consumption of network bandwidth; however, it
does not eliminate the risk.

The network use that we described above is intended to use network bandwidth
differently from a Denial of Service attack. Denial of Service attacks can occur when
a web server receives massive requests from networked clients.

Octopus does not prevent a publisher from defining the processing such that it
requires applications in the peer computer to be involved. This is a strength and a
risk of Octopus. A malicious publisher can do harm to a peer computer, for example
by disabling devices. If it is deployed within a private wide-area-network (WAN)

or within a virtual-private-network (VPN) internal to a company, then the risk is
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reduced. The network is protected, and most of the users are known users bounded
by corporate laws in using the system. The risk is grave if we use Octopus in the
Internet with an open network where anybody can join and leave at will. For this
type of use, Octopus must be restricted to use only the Java programming language
and not allow invoking other internal applications in the peer computer. This reduces
the risk considerably. We can restrict by using a tailored Java Classloader so that we
can load certain classes only. We discuss the Java Classloader in the Security Risk
section 7.2.4. Also with the new release of Jini, the specification improved the security
model that allows dynamic authentication and authorization, which we can use to
secure our network. We discussed the Jini security model in Chapter 3.

So far we discussed risk relating to software and hardware. Although risks relating
to the security are part of software and hardware risks, we describe security risks in a
separate section 7.2.4, as security risk is an important topic. In the following section,

we discuss how a malicious user can exploit the system and how to restrict such users.

7.2.4 Security Risk

A security risk is a possibility of an external user or a program breaking into a system
either to compromise information or to damage the environment. The security breach
occurs when a user, often known as a hacker, exploits glitches in software and hardware
to break into the system thereby causing damage to the system or its information.

Since Octopus works by allowing peers to cooperate in solving a problem, a part of
the problem-solving process requires executing some programs in volunteer computers
(hardware). On the surface, the volunteer computers are breaching their security by
allowing some foreign programs to run. How can a volunteer be sure that the program
it was provided was not an intentionally malicious or error-infested program? This is
the security risk in Octopus.

Since Octopus is written in Java technology, the security risk is manageable be-

cause Java technology uses a Java Virtual Machine (JVM) to run programs. Each
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JVM has a Java ClassLoader, which is a Java class ClassLoader. Classloaders are a
fundamental module of the Java language [8]. A classloader is a part of the Java virtual
machine (JVM) that is responsible for finding and loading class files at run time into
the JVM. The JVM allows Java programmers to write programs that are independent
of operating systems (platforms). Hence, unlike programs written in C, C++, or other
languages, Java programs are not a single executable file but are composed of many
individual Java class files. These class files are loaded into memory on demand as
needed by the application by the ClassLoader class.

Dynamic class loading is an important feature of the JVM. It provides the JVM
with the ability to install software components at run-time. It has a number of unique
characteristics. Dynamic class loading maintains the type safety of the JVM by adding
link-time checks. Moreover, programmers can define their own class loaders that, for
example, specify the remote location from which certain classes are loaded, or assign
appropriate security attributes to them. Classloaders can also be used to provide
separate name spaces for various software components. For example, a browser can
load applets from different web pages using separate class loaders, thus maintaining a
degree of isolation between those applet classes.

Classloaders have a hierarchy with parent classloaders and child classloaders. The
relationship between parent and child classloaders is analogous to the object relation-
ship of super classes and subclasses. The bootstrap classloader is the root of the Java
classloader hierarchy. The Java virtual machine (JVM) creates the bootstrap class-
loader, which loads the Java development kit (JDK) internal classes and java.* packages
included in the JVM. (For example, the bootstrap classloader loads java.lang.String.)
The extension classloader is a child of the bootstrap classloader. The extensions class-
loader loads any JAR files placed in the extensions directory of the JDK. This is a
convenient means to extending the JDK without adding entries to the classpath. How-

ever, anything in the extensions directory must be self-contained and can only refer to

71



classes in the extensions directory or JDK classes.

Every application receives its own ClassLoader hierarchy. The parent of this hierar-
chy is the system classpath class loader. This isolates applications so that application A
cannot see the class loaders or classes of application B. In the hierarchy of class loaders,
no sibling or friend concepts exist. Application code only has visibility to classes loaded
by the ClassLoader associated with the application (or module), and classes that are
loaded by ClassLoaders that are ancestors of the application (or module) classloader.

The ClassLoader does not load classes other than Java classes. This fact reduces
the ability of malicious programs to run programs other than Java programs. On top
of this, ClassLoader provides a restriction on what types of Java classes it can load.
Therefore, this technology allows us reasonably to secure the member computer from
outside attacks. These facts allow us to manage the security risks.

With the understanding of benefit and risks, we develop the Octopus architecture in
the next Chapter. We describe in detail the implementation of the Octopus architecture

using the JavaSpace technology.
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8 Implementation

In this Chapter, we present a detailed discussion of the development of the Octopus
architecture and the resulting system. We demonstrate through a couple of simple
problems that Octopus can be used to solve problems as designed. We relate the
technologies that we described in previous chapters 3 and 4 with the theory that we
presented in chapter 5.

In the Development section 8.2, we give an overview of the software development
process that we followed in the production of the Octopus application. The subsections
present the Octopus development phases that correspond to the various stages of a
software development process. In the Sequence Diagram section 8.2.1, we present
the sequence diagram pertaining to the Octopus framework. In the Object Diagram
section 8.2.2, we present the UML objects of Octopus system. In the Implementation
Details section 8.2.3, we present and describe the Java classes that define important
parts of Octopus.

In the System Configuration section 8.3, we discuss the software configurations and
deployment details of the Octopus. This involves setup and configuration files, manda-
tory software libraries, and the Octopus installation procedures. In section System
Deployment 8.4, we discuss hardware and network prerequisites and configurations

needed to execute the Octopus system.

8.1 Implementation

In this section, we bring together the technologies and the design that we described in
chapters 3, 4, and 5. We revisit relevant topics in technologies and theories to help
describe our implementation. We begin by recapping the technology that we presented
in chapters 3 and 4.

As a part of our technology presentation, we discussed Jini, RMI, and JavaSpace.

Once installed in a machine, a JavaSpace is a network-accessible shared memory area,
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where members of a networked community can read objects from and write objects
to the JavaSpace. There are two types of JavaSpace: transient and persistent. We
use a transient JavaSpace as developed and distributed by Sun Microsystems for our
purposes of our demonstration. However, Octopus shall use persistent space in pro-
duction environments so that all the objects can be restored in an event of failure. In
the Octopus design, the Distributed Communication Space (DCS) is the JavaSpace.
The DCS acts as a message hub for the members of the community.

A ticket is a standard language that the members use to communicate among
themselves. A ticket is a Java object that implements the Jini Entry interface of the
net.jini.core.entry package. We described in Chapter 4 that any Java objects that are
written in the DCS are required to implement the Entry interface object. This is part
of an effort to standardize objects in the DCS. The standardization of objects allows
all the participating members to communicate in a single object language. In Octopus,
there are two types of tickets: a problem and its solution. An acquirer acquires a
problem from the WPC (Work unit Publication Channel), a CFIFO queue, while a
publisher gets solution tickets from SPC (Solution Publication Channel) in the DCS.
A publisher builds a problem ticket and then writes to the WPC in the DCS. An
acquirer builds a solution ticket and then writes to the SPC in the DCS.

As a part of the initialization of the DCS, a transient JavaSpace from Sun Mi-
crosystems is installed in a target machine. Then the WPC is initialized in the DCS
(JavaSpace) through a script. The DCS is then ready for use. Since a JavaSpace is a
Jini service, the part of initialization process of the DCS (JavaSpace) is to initialize the
Web services, the RMI server, and the Lookup Service. We discuss the implementation
of WPC and SPC in the Implementation Details section 8.2.3.

The Distributed Client Communication (DCC) is the client application that resides

in a client machine. It is the client application that

1. connects to the DCS for publication,
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2. acquires problems, and
3. returns solutions.

The DCC is a single application that allows a member to be either a publisher or
an acquirer. The DCC is implemented using Plain Old Java Objects (POJO). Java
technologies allow us to extend existing application programming interfaces (API) to
build the DCC. The user interface is developed using SWING components using the
Model-View-Controller (MVC) design pattern.

We chose Java as a technology for development because of the availability of API’s
and software infrastructures. Moreover, Sun Microsystems is freely providing
JavaSpace, a fully developed product along with API’s. This allows rapid and inexpen-
sive software development by taking advantage of open source materials. In business
terms, this means faster delivery of software with lower cost.

We have described the technologies used to build the Octopus application. Now we
present a problem that we use in demonstrating Octopus. For demonstrating purposes,
we chose two problems: i) finding a stock quote from a given ticker symbol, and ii)
a Monte Carlo simulation of a financial portfolio consisting of four instruments. The
demonstration of the system with those problems allows the Octopus framework to
show that it works as described in the design of the Octopus.

In the following section, we describe the process of software development in building

Octopus, and the details of the technical implementation of the Octopus design.

8.2 Development

In this section, we divide the development phases into subsections in which we describe
each phase of the Octopus development.

We employed a standard Rational Unified Process (RUP) [12] iterative approach
for software development. We gather requirements, then design, develop, and test the

application in an iterative fashion. As the word ‘iterative’ suggests, during the software
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development, we cycle through each of those phases. For example, in the first phase,
we gather requirements, and then proceed to the next phase, the design. Once we
have our first draft of the design, we go back to the requirement phase and review the
requirements. We revise the requirements according to the software system review and
audits. Then we proceed to the design phase again. Once we have a stable design, we
start the development phase. When the first phase of the development is complete,
we revisit the requirement and design phases, and then return to development. The
revisions are incorporated in each phase of the process. This process of iteration is done
until the software is released in its production form. Once the software is released, the
same process is followed for new releases.

The phases in the process map to chapters in this paper as follows. In the Chapter 5,
we described the requirements in section 5.1. Then we described the Octopus design
in section 5.2. In Chapter 8, we focus on the development phase, which is subdivided
into three sub-phases: sequence diagrams, object diagrams, and implementation. We
describe these sub-phases in subsections of this section.

In the subsection Sequence Diagrams 8.2.1, we capture the workflow and functions
of major components in the system. The diagram shows how sequences of events occur
at an object level - object interaction. It also describes the responsibility of an object
at a higher level of abstraction and the interaction with other objects.

In the subsection Object Diagrams 8.2.2, we capture the object relationships. The
diagram shows the relationships and hierarchy of objects. It is not intended to capture
detailed interactions that are captured by the sequence diagram.

In the subsection Implementation Details 8.2.3, we present different code fragments
to illustrate how the technology brings the Octopus architecture into life. In short,
Chapter 5 is about requirements and design while Chapter 8 is about implementation
of the design in Chapter 5. The sequence and object diagrams are used as a guide for

development, which we discuss in implementation details section 8.2.3.
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Publisher

In the following subsections, we delve deeper into the code base of the Octopus. The
notation that we follow is: Java classes and objects are Object without parenthesis,
and method names are method() with parenthesis (we omit any parameters to improve

readability). Variables are simple variable without parenthesis.
8.2.1 Sequence Diagrams

In this section, we present sequence diagrams. These sequence diagrams are driven

from use cases that we presented in Chapter 5.

PublisherCommand SpaceUtil TicketBuilder DistributedQueue JavaSpace ResultProcessor
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Figure 15: Sequence diagram of publisher

Figure 15 shows the sequence diagram of a Publisher. In the diagram, a main
program or a user interface makes a call to PublisherCommand to publish a problem.
First, the PublisherCommand object makes a call to the TicketBuilder to build

a ticket with a problem. Then, it asks the SpaceUtil to find a DCS. Finally, it asks
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DistributedQueue to queue the problem ticket.

When consuming results, a main program or a user interface makes a call on the
PublisherCommand to the consumeResult() method. The PublisherCommand
then asks the SpaceUtil to find a DCS. It asks the ResultProcessor to process re-
sults, which involves looking searching ResultEntry in the DCS. If it finds a Result-
Entry, it processes the results set encapsulated in the ResultEntry. The obtained
results are then displayed in the publisher view.

In Figure 16, we present the sequence diagram for an Acquirer. In the diagram,
the ConsumerCommand asks the SpaceUtil to get the DCS. Then, it asks the
DistributedQueue to get a ticket from the DCS. Once it gets a ticket, it asks the
ProblemProcessor to process the ticket and generate a result. It receives an object
of ResultEntry from the ProblemProcessor, which is then published to the DCS.

We have shown the sequence diagrams. Now we move to the Object Diagrams to

describe the organization of objects in the Octopus application.
8.2.2 Object Diagrams

In this section, we show package layout and object diagrams of Octopus.

Figure 17 shows the package layout of Octopus. The package
com.shirishranjit.octopus is the root. The common package consists of classes common
to Octopus. Classes in this package and sub packages make library classes for Octo-
pus. The util package contains utility classes, which is also part of library classes for
Octopus. The domain.ticket package contains classes regarding problem and solution
tickets. The packages dcc and dcs are the users of domain packages.

Figure 18 shows the package layout for DCC. The dcc package contains acquirer,
gui, publisher, and util packages. The package gui contains GUI classes, while wutil
contains utility classes only for the decc package. The package acquirer contains classes
that make an acquirer. The package publisher contains classes that create a publisher.

Figure 19 shows the packages that make DCS. The gui package contains classes for
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Figure 16: Sequence diagram of acquirer
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the monitor GUI. The queue package contains classes for creating a distributed queue.

Figure 20 shows objects hierarchy for distributed queue. Position class is the par-

ent to classes Head, Tail, and QueueElementEntry classes. Head class represents

the head of the queue, while Tail class represents the tail of the queue.

ElementEntry class represents the elements in the queue.

Queue-

Figures 21, 22, 23, 24, and 25 shows the object relations and hierarchies.
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Figure 17: Overall package layout

Figure 21 shows the DCS objects relationship and their hierarchy.
Figure 22 shows the DCS and Java objects relationship and their hierarchy.
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Figure 18: DCC package layout
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Figure 19: DCS package layout

Figure 23 shows objects relating to result entry and their relationship and hierarchy.

Figure 24 shows the DCC publisher objects relationship and their hierarchy.
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Figure 20: Queue objects hierarchy
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Figure 21: DCS objects hierarchy

Figure 25 shows the DCC acquirer objects relationship and their hierarchy.
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Figure 22: DCS and JavaSpace objects hierarchy

For detailed object diagrams and APT’s, please check the javadoc in the attached

media.

In the following section, we describe implementation details of Octopus.

8.2.3 Implementation Details

In this section, we describe most relevant objects and methods that make up Octopus.
Before we consider code fragments, we explain the implementation of the WPC and
SPC queues in a DCS. Then we explain code fragments for finding a DCS in the Find
Space section, as finding a DCS is central to the Octopus architecture. Then, in Build
Ticket section, we describe how a producer/acquirer builds a ticket to write to a DCS.
These two are the fundamental functions in the Octopus. Then we describe a publisher

code in Publisher Command and an acquirer code in Acquirer Command sections.
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Figure 23: Result objects hierarchy

A DCS is a JavaSpace. Therefore, WPC and SPC queues reside in the JavaSpace.
The WPC is a CFIFO queue implemented as a distributed queue in the JavaSpace.
We use the Jini Entry interface from the package net.jini.core.entry in creating our
distributed queue.

SPC is a queue-like structure. We implement the SPC as a ResultsEntry object
that implements the Jini Entry interface to take advantage of the JavaSpace specifi-
cation. Therefore, once a ResultsEntry object is written to the JavaSpace, it can be
queried to find that object given the ResultsEntry objects member variables. An ac-
quirer publishes a ResultsEntry with the publisher id that it received in a work unit.
This allows the publisher to find results pertaining to it by using the query methods
of JavaSpace.

DCS is implemented as a JavaSpace that contains a distributed queue. The dis-
tributed queue is initialized such that the head and tail of the queue counter are set to 0
indicating there is no element in the queue. The head and tail of the queue implement
the net.jini. core.entry. Entry interface. An Element represented as a QueueElement-

Entry in the queue have also a position counter that indicates its position in the queue.
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Figure 24: DCC Publisher objects hierarchy

The QueueElementEntry also implements the net.jini.core.entry. Entry interface. A
work unit is wrapped in the QueueElementEntry. When an acquirer takes out an
element from the JavaSpace, the element is taken off the head of the queue and added
back at the tail of the queue. This operation accomplished by incrementing both head
counter and tail counter, and updating the position counter in the element.

The implementation of DCS is a JavaSpace. Therefore, please refer to the JavaSpace
javadoc for the code explanation published by SUN at http://java.sun.com.

Now we present the DCC code fragments and their descriptions. Before going into
details of code fragments, we point out that we follow Java Coding Standard published

by Sun Microsystems with some modification to the standard.

Find Space: Finds a DCS - The FindSpace is a utility class that provides methods
to find a DCS, the primary task in publishers and acquirers. For example, an

acquirer must find a DCS before requesting a problem and processing it.

The following method getSpace() in the FindSpace returns a JavaSpace if the
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FindSpace object has space, a JavaSpace, cached in it. Otherwise the method

makes a call to waitForSpace() to look up the specified space.

/**

* Return the space

* means it hasn’t yet appeared. Call <code>waitForSpace()</code> at
* least once before using this method.

Oreturn JavaSpace returns a handle to a space.

*

*/
public JavaSpace getSpace() {
if (space == null) {
space = this.waitForSpace();

}

return space;

The method waitForSpace() returns JavaSpace that it finds in its network. The
method calls lookupServiceByType() for finding serviceTypes, a list of class
names, in the network. In a Lookup service, a JavaSpace is stored as a Service-
Template. Therefore, we look up a jsp, a JavaSpace as a ServiceTemplate.
Once we receive a item, a Serviceltem, the item is type cast into a JavaSpace
class. The way it is written, the method returns only one JavaSpace although

it may find many.

/** Finds a JavaSpace in the network. It makes a request to method

86



* lookupServiceByType with given serviceTypes as a JavaSpace.
* Qreturn A reference to the JavaSpace service located.
*/
private JavaSpace waitForSpace() {
Class serviceTypes[] = { JavaSpace.class };
JavaSpace jsp = null;
try {
Serviceltem item = lookupServiceByType(serviceTypes, null);
jsp = (JavaSpace)item.service;
} catch (RemoteException re) {
LOGGER.log(Level.SEVERE," Remote exception space ", re);
} catch (I0Exception ioe) {
LOGGER.log(Level.SEVERE," Exception in space "
+" discovery: ", ioe);
} catch (Exception e) {
LOGGER.log(Level.SEVERE," Exception space ", e);
}

return jsp;

The following method lookupServiceByType() finds an item, a Serviceltem,
from a Lookup service in the network. It looks up a JavaSpace as a tmpl, a
ServiceTemplate, that contains the JavaSpace class name. The method first
creates a sdm, a ServiceDiscoveryManager, with a LookupDiscovery. Then
using the sdm instance, it looks up the given tmpl. The sdm returns an item, a
Serviceltem. The method will try for NUM_ITERATION times to find the given
tmpl before quitting.

/** This method uses the ServiceDiscoveryManager to locate the

* particular type of service specified by the caller. The method
either finds the item or goes through specified number of
iterations before returning a null item.

After each loop in while, it sleeps for specified time period.

@param serviceTypes Array of classes which our desired service
should implement. If a service matching one
of these type is found, it is further
scrutinized by the ServiceltemFilter.

Oparam sif Either null or an object that implements
a method which returns a boolean to indicate
whether this service item is acceptable.

Q@return A service item matching our class criteria and also

¥ O K K X X X X X X ¥ X *
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* acceptable to any ServiceltemFilter passed.
* Qthrows IOException throws an IOException
*/
private ServicelItem lookupServiceByType(Class serviceTypes[],
ServiceItemFilter sif)
throws I0Exception {
ServiceDiscoveryManager sdm = null;
ServiceTemplate tmpl =
new ServiceTemplate(null, serviceTypes, null);
Serviceltem item = null;
String groups[] = new String[1];

groups[0] = new String(getLookupGroup());
sdm = new ServiceDiscoveryManager (
new LookupDiscovery(groups), null);
int i = 0;
while ((item == null) && (i < NUM_ITERATION)) {
try {
item = sdm.lookup(tmpl, sif, 10000);
} catch (InterruptedException intr) {
LOGGER.log(Level .SEVERE, " Interrupted...");
continue;

if (item == null){
try {
LOGGER.log(Level.INFO, " item not found yet. "
+" Interation: "+i);
Thread.sleep(WAIT_TIME);
}
catch(InterruptedException ie) {
LOGGER.log(Level.SEVERE, " The FindSpace is "
+" interrupted.", ie);
continue;

}

i++;

}

return item;

Once we have a handle to the JavaSpace, we need a TransactionManager

for doing operations in the JavaSpace (DCS). The following method waitFor-

TransMan() allows us to get a handle for a TransactionManager. Just like a

JavaSpace, a TransactionManager is also stored in a Lookup service. This
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method also calls the lookupServiceByType() with the serviceTypes, a list of
Class objects, of TransactionManager objects.

/**
* Finds a transaction manager in the network. If none can
* be found, it returns a null.
* Q@return A reference to the JavaSpaces service located.
*/
private TransactionManager waitForTransMan() {
Class serviceTypes[] = { TransactionManager.class };
TransactionManager tm = null;
try {
Serviceltem item = lookupServiceByType(serviceTypes, null);
tm = (TransactionManager)item.service;
} catch (RemoteException re) {
LOGGER.log(Level .SEVERE, " Remote exception "
+ " transacation manager ", re);
} catch (IOException ioe) {
LOGGER.log(Level .SEVERE, " IOException in "
+ " transacation manager discovery: ", ioe);
} catch (Exception e) {
LOGGER.log(Level .SEVERE, " Exception "
+ " transacation manager ", e);
}

return tm;

We need to build tickets before we can write to the DCS. We present the following

code for building a ticket.

Bulding Ticket: Builds a ticket - There are two types of tickets - problem and solu-
tion. A publisher creates a ticket with a work unit. An acquirer creates a result
ticket containing results or solution of the solved problem. Both the publisher

and the acquirer publish their respective tickets to DCS.

The following code block is the buildWorkUnit() method in the TicketBuilder.

The method builds a work unit for a publisher.

VAL

* Builds a work unit ...

* Qreturn WorkUnit... a unit of work.
*/

public WorkUnit buildWorkUnit (PublisherID pubId){
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WorkUnit wUnit = new WorkUnit (pubId);

return wUnit;

It creates an instance of the WorkUnit, wUnit, that contains publisher id. Then,
necessary parameters are set and returned in the object to the caller. A publisher
has a choice of publishing either a stock quote problem or a Monte Carlo sim-
ulation of the value of a portfolio, or both problems. This creates a work unit
with chosen problem or problems. The work unit is queued in the DCS. When
the publisher chooses a Monte Carlo simulation problem, it marks the boolean
variable in WorkUnit as true. The WorkUnit object has a predefined portfolio

simulation model.

The following code represents fragments from ResultEntryBuilder that helps

to build a result ticket.

/%%

The method builds ResultsEntry from the parameters supplied.
The Arraylist it received contains results in a string that is
then added to the DemoResult object.

Oparam publd publisher id

Oparam results list of results

Oparam simResults list of simulation results

Q@return ResultsEntry object

* K ¥ X ¥ ¥ ¥

*/
public ResultsEntry buildResultEntry(PublisherID publd,
ArrayList results, ArraylList simResults) {

if ((results.size() == 0) && (simResults.size() == 0)) {
return null;

}

ArrayList resultHolders = new ArrayList();

for (int i = 0; i < results.size(); i++) {
String sol = (String)results.get(i);
//a holder of the result.
DemoResult demo = new DemoResult();
demo.setSolution(sol);
resultHolders.add(demo) ;
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//add the simulation results.
DemoResult simDemo = new DemoResult();
simDemo.setSimResult (simResults);
resultHolders.add (simDemo) ;

return buildEntry(pubId, resultHolders);

VAL

Builds a ResultsEntry out of a collection of
DemoResults containing the

results from processing of the given problem.
Oparam publd publisher id

@param resultHolder a Collection object.
Q@return ResultsEntry object

* X ¥ X ¥ ¥

*/
private ResultsEntry buildEntry(PublisherID publd,
Collection resultHolder) {
ResultsEntry resEnt = new ResultsEntry(publd);
resEnt.addList (resultHolder);
return resknt;

In the ResultEntryBuilder, the private method buildEntry() takes a publd,
a PublisherID, a results, an ArrayList of results from Stock Quote, and
a simResults, an ArrayList of simulation results to build the ResultsEntry
object. The method returns a ResultsEntry object that contains solutions and
the publisher id. The ResultsEntry has PublisherID so that publishers can
search the DCS with their PublisherID. The PublisherID contains a Java

Long object.

An acquirer command, ConsumerCommand, calls the method

buildResultEntry() for building a ResultsEntry object. It takes a publd, a
PublisherID, a resultHolder, a Collection, a list of results containing a list
of results from the simulation and the Stock Quote as a String data type. In-
side the ‘for loop’, the buildResultEntry() creates a a demo, a DemoResult that
encapsulates the Stock Quote results and simDemo, a DemoResult that encap-

sulates the simulation results. The method calls the private method buildEntry()
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to construct the ResultsEntry.

The ResultsEntry object contains solution elements for both problems. The
setSolution() method sets the solution from stock quote while setSimResult()
sets the solution from the simulation. A publisher checks for those two elements

of ResultsEntry object to process solutions.

We have described how to find a DCS and how to build tickets. Now let us look
at how a publisher works. The following PublisherCommand and Consumer-

Command in implement the Command design pattern.

Publisher Command: A publisher - Functions of a publisher are represented in the
following PublisherCommand. The PublisherCommand has three essential

methods, publishProblem(), consumeResult(), and removeProblem().

The method publishProblem() takes a wu, a WorkUnit, object as an input pa-
rameter. It then finds a JavaSpace, and instantiates the DistributedQueue as
a da to queue the wu, work unit, in the JavaSpace. The DistributedQueue

object has the expertise to interact with the JavaSpace to queue the WorkUnit.

/**
* The method builds a work unit, and then pubishes it to
* the distributed queue (DCS). It gets a JavaSpace from FindSpace,
* then makes a request to a DistributedQueue object to enqueue
* the work unit.
%
* @param wu a work unit for publication.
*/
public void publishProblem(WorkUnit wu) {
try {
//get a problem

//find a JavaSpace

FindSpace fspace = new FindSpace();

JavaSpace space = fspace.getSpace();

//publish the problem in the distributed queue

//in the JavaSpace.

LOGGER.log(Level.INFO, " Publishing the ticket now ");
DistributedQueue dq = new DistributedQueue(Lease.FOREVER);
//publish the ticket here.

dq.enqueue(wu, wu.getPublisherId());
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}
catch (Exception e) {
e.printStackTrace();
LOGGER.log(Level .SEVERE, " Exception in publish "
+ " problem ", e);

The method consumeResult() consumes results intended for the publisher. The
method first finds a fspace, the JavaSpace. Then it creates a ResultProcessor
object as a rp, with the fspace, the pubId, and a pubModel, the Publisher-
Model objects. The rp gets all results from the DCS, processes, and updates
the pubModel for viewing. Therefore, when the processing is complete, the view
gets updated with the result information stored in the PublisherModel object.
Once the publisher receives the necessary results, it removes the problem from
the JavaSpace. The removeProblem() method accomplishes the work of removing
problems published by the publisher. The method removeProblem() first gets a
handle to a fspace, the JavaSpace. Then it requests the DistributedQueue,

dq, object to remove a problem that contains the publisher’s id.

The following function is removeProblem().

VAL

This is a driver method in consuming results from the JavaSpace.
The method finds a JavaSpace, and then searches the JavaSpace
with its id to retrive all the results available in the Space.
As results are processed, the output is stored in PublisherModel
for View. Once the processing is complete, the View is

updated with the data in PublisherModel.

@param pubModel A model for capturing the information on
processing of results.

* X ¥ X X ¥ X ¥ *

*/
public void consumeResult(PublisherModel pubModel) {

try {
//find a JavaSpace
FindSpace fspace = new FindSpace();
JavaSpace space = fspace.getSpace();
//Wait for the result... spawn a thread that waits and
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//checks the space.
LOGGER.log(Level .INFO, " Processing results ");
ResultProcessor rp =
new ResultProcessor(space, pubId, pubModel);
rp.process();
//Thread rpT = new Thread(rp, pubId.toString());
//rpT.start(Q;
}
catch (Exception ex) {
ex.printStackTrace();
LOGGER.log(Level .SEVERE, " Exception in consume result ",
ex);

VAL

* The method removes a problem that the publisher published.

* It searches the distributed CFIFO queue with its id to remove a
* problem at a time.

*/

public void removeProblem() {

try {
//find a JavaSpace
FindSpace fspace = new FindSpace();
JavaSpace space = fspace.getSpace();
//Wait for the result... spawn a thread that waits and
//checks the space.
LOGGER.log(Level.INFO, " Removing Problem...");
DistributedQueue dq = new DistributedQueue(Lease.FOREVER);
//Remove Problem with given entry
dq.removeQueueElement (pubIld) ;
LOGGER.log(Level .INFO, " Removing Problem complete...");
}
catch (Exception ex) {
ex.printStackTrace();
LOGGER.log(Level .SEVERE, " Exception in remove problem",
ex);

As we have discussed how a publisher works, the following code block shows how

an acquirer works as a part of DCC.

Acquirer Command: An acquirer - The following code fragments represent an ac-
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quirer function. The class ConsumerCommand shows an acquirer getting a
problem from the DCS, then processing the problem, and writing the results

back to the DCS.

This demonstration application is a simple one to demonstrate that the Octopus
architecture works. Thus, the application is not sophisticated to handle termina-
tion of processing in situations such as machine being turned off in the middle of
the processing. Our vision is that the application should able to recover from its
last known state and start processing. This is a nice feature. However, the Octo-
pus architecture is designed to allow such failure. Therefore, the failed acquirer
can just wake up and ask for a new problem to solve instead of trying to recover
the last known state and process forward.

/** This is the driver method of an acquirer. It finds a
* JavaSpace, gets a problem from the JavaSpace, process it, and
* then publishes a result into the JavaSpace.
* Q@param model a model for storing information for presenting in
* acquirer view.
* Q@throws OctopusException OctopusException
*/
public void consumeCommand (AcquirerModel model)
throws OctopusException {
try {
//a. first find the JavaSpace.
FindSpace fspace = new FindSpace();
JavaSpace space = fspace.getSpace();
//b. get a problem from the JavaSpace
WorkUnit wu = getProblemFromSpace (model) ;

if (wu !'= null) {
model.setResults(wu.toString());

LOGGER.log(Level.INFO,

" ConsumeCommand: what we have in wu: \n" +
wu.toString());

//instantiate the processor.

ProblemProcessor pp = new ProblemProcessor() ;
//c. process the problem.

ResultsEntry re = pp.process(wu);

LOGGER. log(Level.INFO,
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" ConsumeCommand: This is the ResultsEntry: " + re);
//d. write results to the JavaSpace.
if (re !'= null) {

space.write(re, null, Lease.DURATION);

}
X
else {
model.setResults(" There is no problem to solve: "
+ " Lets try again later.");
X

}
catch (Exception e) {
if (e instanceof OctopusException){
throw (OctopusException) e;

}
else{
e.printStackTrace();
throw new OctopusException(" There is an exception in "
+ " ConsumerCommand ", e);
X

The consumeCommand() method first get a handle to a fspace, the JavaSpace.

Then, it makes a request to the private method getProblemFromSpace() to ac-

quire a work unit, wu. The method asks ProblemProcessor to process the work

unit. The process() method processes the wu, a work unit, and returns a Result-

sEntry object for publishing into the fspace, the JavaSpace. The result is

written to the DCS.

The following function is getProblemFromSpace().

/*x This method gets a work unit from the JavaSpace. The

*

* X K X X X X ¥ *

method tries to get a work unit for fixed number of times. After
completion of each iteration, it sleeps for a fixed time

period. This allows the method to wait until a work unit appears.
If it cannot find a work unit within that time period, it

exits with a null work unit.

@param model An acquirer model for storing data for viewing
O@return WorkUnit A unit of work received from the JavaSpace
Othrows OctopusException OctopusException All the exceptions are
wrapped in this exception
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*/
private WorkUnit getProblemFromSpace(AcquirerModel model)
throws OctopusException {
try {
boolean gotProblem = true;
LOGGER.log(Level.INFO, " Getting the ticket now ");
DistributedQueue dq = new DistributedQueue(Lease.DURATION);

WorkUnit wu = (WorkUnit) dq.getTicket();

if (wu == null){
gotProblem = false;
}
//lets wait till we get a problem.
int i = 0;
while ((!gotProblem) && (i < 10)) {
model .setResults(" No work unit to process... \n"
+ " Looking for new work unit....\n");
LOGGER.log(Level.INFO, "Checking the work to do.");
wu = (WorkUnit) dq.getTicket();
if (wu !'= null) {
LOGGER.log(Level.INFO, " WE GOT work to do.");
model.setResults(" WE GOT work to do... \n");
gotProblem = true;

}
else {
LOGGER.log(Level.INFO, " Nothing in the queue, "
+ " sleeping.. This is iteration: " + i);
model.setResults(" No work unit to process. "
+ " Iteration: " + i + "\n" + " Waiting for "
+ SLEEP_TIME + " millisec....\n");
Thread.sleep(SLEEP_TIME + (10 * (i + 1)));
i++;
}

LOGGER.log(Level.INFO, " Got something to work. " +wu
+ " number of iteration: " + i);

return wu;
}
catch (RemoteException ex) {
throw new OctopusException(" RemoteException in "
+ " getting problem from space. ", ex);

}
catch (InterruptedException ex) {
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throw new OctopusException(" InterruptedException "
+ " in getting problem from space. ", ex);

}
catch (UnusableEntryException ex) {
throw new OctopusException(" UnusableEntryException "
+ " in getting problem from space " , ex);
}
catch (LeaseDeniedException ex) {
throw new OctopusException(" LeaseDeniedException ",
ex);
}
catch (TransactionException ex) {
throw new OctopusException(" TransactionException in "
+ " getting problem from space.", ex);
}
catch (IllegalArgumentException ex) {
throw new OctopusException(" IllegalArgumentException "
+ " in getting problem from space. ", ex);

The method getProblemFromSpace() gets a wu, a work unit object, from the DCS
by asking the dq, the DistributedQueue object to get a WorkUnit from the
JavaSpace. It will try for a fixed number of attempts. During each attempt,
the method sleeps for fixed period of time. This allows the method to have an
opportunity to get a work unit from the DCS. The delay time increases with each

attempt by 10 milliseconds times the iteration.

The following method process() in object ProblemProcessor processes a work
unit that it receives from DCS. The method instantiates an object Problem-
ProcessorThread as a procT, for processing the work unit. Once the process-
ing is complete, it gets results and builds ResultsEntry that is returned to the
caller. We have described the building of ResultsEntry in Build ticket section
above.

/%%
* The method takes a work unit as a parameter. It creates a
* ProblemProcessorThread object for processing the work unit.
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The processing is complete, the results are set and
ResultsEntry is generated and returned to the command object.

Oparam wu work unit

%
%
%
%
* Qreturn ResultsEntry an object with results from processing
%

*/
public ResultsEntry process(WorkUnit wu) {
ProblemProcessorThread procT = new
ProblemProcessorThread (wu.getUserName()) ;
//lets set the work unit and model
procT.setWu(wu) ;

//start the processing

procT.process();

//lets get the results.

String results = procT.getResult();
ArrayList listRes = new ArrayList();
listRes.add(results);

ArrayList simResult = procT.getSimResult();

//lets build the result entry.

ResultEntryBuilder reb = new ResultEntryBuilder();

//lets give the result entry back

return reb.buildResultEntry(wu.getPublisherId(), listRes,
simResult) ;

The following two methods process() and simulator() in the object Problem-
ProcessorThread() are for processing the work unit. Although the object
ProblemProcessorThread() is not implemented as a thread yet, it is designed
to work as a thread. The method process() calls process() method in WorkUnit
object. The process() method in WorkUnit finds a stock quote first and then
checks if it needs to do a simulation. If it is set to do the simulation, then it asks
the simulator() method to do the simulation.

The method simulator() evaluates the model that is provided in the work unit
object. The method simulator() executes the simulation function in the wu object

with the iteration number in wu.

/%%
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* This method processes the work unit. First it
* gets the stock quote. Then it processes simulation.
%

*/
public void process(){
LOGGER.log(Level.INFO, "Processing the WorkUnit");

wu.process();
result = wu.getResult();
simResult = wu.getSimResult();

LOGGER.log(Level.INFO,"complete processing") ;

VAL
* Simulator method. This method simulates the portfolio.
%
*/
private void simulator(){
Logger LOGGER = OctopusLogger.getHandle();
LOGGER.log(Level.INFO, " Simulator processing "+
" the WorkUnit Simulator ");
int simNum = wu.getNumIteration().intValue();

simResult.add (wu.evaluateModel());

//lets simulate the model.

for(int i = 0; i <= simNum; i ++){
simResult.add(wu.simulateModel());

}

LOGGER.log(Level .INFO, " Simulation Complete ");

We have described implementation of DCC. In the following sections, we describe

system configurations and deployment of Octopus.

8.3 System Configuration

In this section, we describe system configurations of Octopus for deployment. Since
Octopus is implemented in Java, there is no dependency on hardware as long as we
can run a Java Virtual Machine (JVM). Therefore, the requirements are JDK 1.4 or

higher and Jini Technology Starter Kit (JTSK) 2.0 or higher.
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Download J2SE version 1.4 or higher from http://java.sun.com/j2se/index.jsp, and
Jini Technology Start Kit version 2.0 or higher from
http://wwws.sun.com/software/communitysource/jini/download.html. Install both Jini
and J2SE as per their instructions. Make sure that the file jsk-policy.jar needs to be
installed in J2SE installation as per the Jini installation instructions. The instal-
lation instructions of JTSK 2.0 are to copy the file jini2_0_001\lib\jsk-policy.jar to
j2sdk1.4\jre\lib\ext. This is absolutely necessary for Jini services including
JavaSpace. For DCC, only J2SE needs to be installed for its Java Virtual Machine
(JVM).

The paths of J2SE, JSKT, and libraries need to be modified in scripts before they
are ready for the use. We provide fully functional demonstration software in the media
as an appendix to the paper. The media contains the Jini, J2SE, and fully functional
scripts to run the demonstration.

Before we can use Jini services, we need to configure the Jini Technology Starter

Kit. Those Jini services are as follows.
e Fiddler - a Jini lookup discovery service
e Mahalo - a Jini transaction manager service
e Mercury - a Jini event mailbox service
e Norm - a Jini lease renewal service
e Qutrigger - a JavaSpaces(TM) service
e Phoenix - a configurable RMI activation system daemon
e Reggie - a Jini lookup service

In our demonstration program, we use all the services except Mercury and Norm.
We provide a fully configured, self-contained installation of Octopus in an appendix

as an electronic media. This includes DCS and DCC.
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In the following section, we discuss the deployment process of the Octopus system

that we have configured in this section.

8.4 System Deployment

In this section, we present initialization and deployment process for Octopus - DCC,
and DCS.

The Octopus software is bundled such a way that it needs to be copied to a location
and a few scripts for deployment and installation. The software is self-contained and
no external installation is required. All necessary tools such as JDK and JTSK, are
bundled in the software. But the software is bundled only with WINDOWS compatible
JDK and JTSK only.

Following are the steps necessary for deploying the whole Octopus system.

1. Deploy DCS, that is Jini, in a machine by unzipping DCS.zip file in a location.

jini is the root directory.

2. Run the script run_all_servies.bat in the folder jini\bin. This batch pro-
gram starts five batch programs in the bin directory that starts Jini services. The
batch programs are executed in sequence in order to bring up each service. The
order and the services are
(a) launch RMI server - Phoenix
(b) launch HTTP server to download the code base - Codebase server

(c) launch Lookup service - Reggie

(d) launch Transaction manager - Mahalo

(e) launch JavaSpace - Outrigger

Both Codebase Server (HTTP server) and Phoenix (RMI) services are running

on the same port. The default port that is assigned is 8081. The scripts that

run those services are jini_codeserver.bat and run_phoenix.bat respectively.
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Once you see “INFO:..” on each command window, the services are up and run-

ning. Then, we need to initialize DCS.
3. Initalize the DCS by running initOctopus.bat in the folder jini\octopus\bin.

4. Deploy DCC in those machines that are going to be publishers and acquirers by

unzipping DCC.zip. The root directory is The octopus.

5. Run the script runOctopus.bat in the folder octopus\bin. This will start a

GUIL

The DCC has a graphical user interface (GUI). The GUI has a tab pane that gives
a choice of being a publisher or an acquirer. A publisher has a choice of publishing the
problem of finding a quote, or simulating a portfolio model, or both. Before clicking on
the ‘Publish Problem’ button, one needs to check either one problem or both problems.
The ‘Publish Problem’ button publishes the checked problems into DCS. The ‘Acquire
Results’ button finds all the results available for the publisher and processes those
results. The resulting information is displayed on the text area. The ‘Remove Problem’
button removes one problem at a time that the publisher has published in the DCS.

An acquirer has a choice of solving a problem by clicking on the button ‘Acquire
Problem.” When the button is clicked, the acquirer gets a problem from the DCS,
process it, creates a ResultsEntry object, and then publishes to the DCS.

In this Chapter, we discussed the implementation details of the Octopus. In the
next Chapter 9, we present our accomplishments, contribution, and how the project

can be extended.
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9 Further Work

The goal of the project has been to develop a Peer-to-Peer (P2P) Distributed Com-
puting environment, named Octopus, such that we can capitalize unused computer
resources to solve computing intensive problems. We have designed, developed, and
demonstrated that it is a formidable solution for common business problems by using
wired or wireless resources.

Our simple demonstration has shown that the Octopus architecture is a viable
framework for P2P Distributed Computing. Though the current demonstration version
contains a minimal set of functions, we make a case that this is a viable product
for solving business problems and managing corporate information, with additional
functionality such as security, clustering, and so on.

The Octopus framework harmonizes devices in the network. Though designed to
taking advantage of idle resources in a network, the framework is capable of not only
utilizing resources in the network but also a medium for devices to communicate among
peers in the network. Since the Octopus architecture addresses issues with distributed
computing such as partial failure and latency as described in Chapter 7, it is a frame-
work for guaranteeing at least a solution.

Our vision of a production-ready product is a framework for P2P Distributed Com-
puting that a business can use to solve business problems and manage information.
The product may be tailored to a client’s specific problem. However, we can package a
few universal problems. One such problem is managing personal data such as calendar,
emails, notes, and so on, among various devices such as PDA’s, cell phones, desktops,
and so on. We can provide an out of box solution for personal data synchronization
along with the Octopus framework.

We believe the natural extension of the applications of this product besides the
financial industry is medical data processing. Medical data processing involves gath-

ering data from medical devices from patients, transmitting and storing those data in
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appropriate storage in the network, analyzing those data, and sending the results to
appropriate devices such as the PDA of the patient’s primary physician for review. The
Octopus architecture provides a suitable framework for harmonizing medical devices,
using resources, and managing medical data and information efficiently in a network.
Therefore, we can provide timely medical services to patients. There is a pressing
need to improve current medical processing as ‘baby boomers’ age and require medi-
cal attention. We believe Octopus is a choice computing framework for medical data
processing.

If we get funding, what is our strategy to develop a fully-grown product? We need
to add functionality such as security, high availability, and extensible API’s that we
use to add problems such that acquirers can readily process them without a need for
a software upgrade.

The first functionality that we add is the security model supported by the Jini 2.0
specification. The security model should be able to authenticate and authorize a code
fragment to prevent any malicious code. Besides the authentication and authorization,
we distribute a digital certificate to each publisher to publish problems in DCS as
a way of preventing unwanted intrusion to the system. Acquirers can use the same
digital certificate to authenticate the authenticity of the request. Similarly, the digital
certificate is used to authenticate the publishers to allow removing problem and results
that belong to them only from the DCS.

We need to create a robust and secure DCS (JavaSpace). We need to be able to
cluster DCS for performance, high availability, load balancing, and so on. We use the
SUN implementation of the JavaSpace specification, which is a simple implementation.
There are a few commercial JavaSpace products such as “GegaSpace” that we take
leverage instead of implementing our own JavaSpace. This allows us to provide a
secure, robust, and high availability DCS.

Once we have a secure infrastructure, we need to secure information. For example,
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the medical information cannot be compromised as regulations such as the HEALTH
INSURANCE PORTABILITY AND ACCOUNTABILITY ACT (HIPPA) dictates se-
curity guidelines for the medical information. The penalty is high when security is
compromised. It is not only the law, but the very existence of a corporation depends
on security of the corporation’s vital information. Breach of corporate secrecy can
be fatal to the corporation. Therefore, securing information is vital to the success of
a distributed application. This requires the Octopus to encrypt data and problems.
The data encryption also allows us to discriminate acquirers as service providers such
that only certain acquirers have expertise or resources for providing services for such
problems. Those acquirers have keys to decrypt the data and problems.

We develop an encryption model that creates a hierarchy of security. The acquirers
have different levels of security clearance as in an intelligence agency. This allows
creating different levels of service providers. The acquirers have keys corresponding
to their security clearance. The encryption model, i.e. security clearance, also can be
thought of as the abilities of an acquirer.

The Octopus framework needs to encompass mobile devices such as J2ME and
Bluetoothe devices. This will allow us to extend service to small mobile devices. This
is where medical devices can take advantage of the framework, as those devices may
be small and mobile.

True P2P Distributed Computing is only possible when there is a common language
with full vocabulary so that acquirers can decipher publishers’ requests. Java has stan-
dardized programming to an extent. Similarly, XML has provided a standardized data
format. Jini has taken one step forward toward standardizing objects in a memory.
An example of object standardization is the use of the
net.jini.core.entry. Entry Interface as a requirement for writing objects in a JavaSpace.
Such standardization provides a common object language that a community of com-

puters can use for understanding each other’s request. Although we have come a long
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way in developing common standards, we still lack a common vocabulary for P2P Dis-
tributed Computing. We need a language with vocabularies in which we can describe a
problem such that the members of community can understand without deploying new
version of software. Just as the English language has provided a medium of communica-
tion among English speaking communities, we need a language with a rich vocabulary
to describe our needs so that a member in the community can understand a request
with ease and fulfill the request. Jini has paved a path for such a language; however,
we do need to extend Jini language capacity to create a standard language with full
vocabulary to describe our needs. That language can provide a true common object
language such that all acquirers and publishers alike can parse the information with
ease to make pure P2P Distributed Computing a reality.

In conclusion, the Octopus architecture applies to any devices connected in a wired
or wireless network. Thus, the Octopus system encompasses mobile and wireless devices
along with desktop computers and servers. The strength of the Octopus architecture
is that it accepts any hardware capable of running a JVM. We see a huge application
of the Octopus architecture in managing information, solving problems, exchanging

information among devices whether it is wired or wireless, static, or mobile devices.

107



Appendix A

Experimental Results

Following tests were conducted in a closed network with four computers. One computer
was dedicated as a DCS, and other three can choose to be a publisher, an acquirer, or
both. During the experiment, the DCS held between 7 and 12 problems at any given
time. We report the following observations.

Test scenario A is to have two publishers to publish two different kinds of prob-
lems.

Octopus did not have any problem distributing problems and returning solutions.
Octopus was able to distribute Stock Quote as well as Portfolio Simulation problems.
Also, Octopus was able to publish results.

Test scenario B is to crash or remove publishers and acquirers in a systematic
and repeatable way.

The results show that acquirers were able to get a problem and solve it once on the
network. Similarly, publishers were able to publish problem and receive results without
any problems.

Test scenario C is to observe if there is any impact on providing solutions to
problems when acquirers abruptly disappear.

When an acquirer abruptly disappeared, it did not have an impact on receiving
at least one solution. The problem was solved by another member in the network

community.
Contents of CD
The following are the items that are included in the CD.

1. A user guide.

2. OctopusDCC-2.zip - Software to install in peer computers.
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3. OctopusDCS-2.zip - Software to install JavaSpace and Jini services.
4. Source code.

5. Javadoc.
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